MATH 6720
Qualifying exam
Due Date: 08/18/2022

Instructions: There are five problems on the qualifying exam covering all the topics discussed
in MATH 6720: complex numbers and elementary functions, analytic functions, series and sin-
gularities, complex integration, residue theory, conformal mappings and bilinear transformations,
applications to fluid flow and PDESs, asymptotic series expansions of integrals.

You must solve 3 out 5 problems. Clearly indicate which problem should be graded, otherwise
problems will be graded as they appear. Each problem is worth 25 points. A high pass corresponds
to a score of 66 and above (out of 75). A pass corresponds to a score of between 57 and 65 (out of 75).

1. Problem 1:

(a) (8 points) Let P(z) be a polynomial of degree n, with n simple roots, none of which lie
on a simple closed contour C'. Evaluate
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(b) (8 points) Use Liouville’s Theorem to prove the Fundamental Theorem of Algebra. Let
P(z) be any polynomial of integer degree m > 1. Then there is at least one point z = «
such that P(«) = 0; that is P(z) has at least one root.

(c) (9 points) Let f(z) be a meromorphic function, i.e. a function that only has poles in the
finite plane, defined inside and on a simple closed contour C', with no zeros or poles on C.
Let N and P be the number of zeroes and poles, respectively, of f(z) inside C'; where a
multiple zero or pole is counted according to its multiplicity. Show that
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2. Problem 2:
Recall the binomial expansion
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(a) (12 points) Use the binomial expansion and Cauchy’s Integral Theorem to evaluate
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where C' is the unit circle centered at the origin.

(b) (13 points) Use this result to establish the following real integral formula:
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3. (25 points) Problem 3:
Use residue calculus to show that
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4. (25 points) Problem 4:
Use the keyhole contour below to show that on the principal branch of 2*
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5. Problem 5:
Consider a source at z = —a and a sink at z = a of equal strength k.

(a) (12 points) Show that the associated complex potential is Q(z) = klog[(z + a)/(z — a)].
(b) (13 points) Show that the flow speed is 2ka/\/a* — 2a%r2 cos(20) + r, where z = re'®.
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