

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
 Ph.D. Preliminary Examination: Analysis of Numerical Methods, II
 Fall 2025

This exam is closed book, closed notes, and no calculators are allowed. You have two hours to complete this exam.

There are 5 problems below. **You must complete 3 problems total.**

- **You must complete 2 problems from questions 1-3.**
- **You must complete 1 problem from questions 4-5.**

Each problem is worth 20 points. Clearly indicate which 3 problems you wish to be graded; otherwise, the first 3 problems with work shown will be graded.

- A score of 52 (out of 60) is a *high pass*.
- A score of 48 (out of 60) is a *pass*.

1. (20 pts) On an equidistant mesh $x_j = jh$, define the operator \tilde{D}_0 as,

$$\tilde{D}_0 u(x_j) = \frac{u(x_j + h/2) - u(x_j - h/2)}{h},$$

For a given smooth κ and f , consider the scheme,

$$-\tilde{D}_0(\kappa(x_j)\tilde{D}_0 u_j) = f(x_j),$$

for the ODE $-\frac{d}{dx}(\kappa(x)\frac{d}{dx}u(x)) = f(x)$. What order is the local truncation error?

2. (20 pts) For the ODE $\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u})$, consider the time-integration scheme

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \frac{k}{4}\mathbf{f}(t_n, \mathbf{u}_n) + \frac{3k}{4}\mathbf{f}\left(t_n + \frac{2}{3}k, \mathbf{u}_n + \frac{2}{3}k\mathbf{f}(t_n, \mathbf{u}_n)\right).$$

- (a) (5 pts) Identify the Butcher tableau for this scheme.
- (b) (8 pts) Compute the order of consistency of this scheme.
- (c) (7 pts) Compute the stability/amplification factor of the scheme.

3. (20 pts) Consider the ODE,

$$\mathbf{u}'(t) = \mathbf{A}\mathbf{u} + \mathbf{N}(t, \mathbf{u}),$$

where \mathbf{A} is a fixed matrix and \mathbf{N} is an arbitrary, e.g., nonlinear, function.

- (a) (6 pts) With initial data $\mathbf{u}(0) = \mathbf{u}_0$, show that the solution to this IVP at time $t > 0$ is given by,

$$\mathbf{u}(t) = e^{t\mathbf{A}}\mathbf{u}_0 + \int_0^t e^{(t-s)\mathbf{A}}\mathbf{N}(s, \mathbf{u}(s))ds,$$

where $e^{t\mathbf{A}}$ is the matrix exponential of $t\mathbf{A}$.

- (b) (14 pts) Exponential integrators form a scheme to compute \mathbf{u}^{n+1} in terms of \mathbf{u}^n by integrating the above expression over the interval $[t_n, t_{n+1}]$ (instead of $[0, t]$), by approximating $\mathbf{N}(\mathbf{u}(s))$ with a quadrature rule/polynomial approximation, and by exactly integrating the matrix exponential term. A Forward Euler exponential integrator makes the approximation $\mathbf{N}(\mathbf{u}(s)) \approx \mathbf{N}(\mathbf{u}_n)$. Write out the Forward Euler exponential integrator scheme explicitly (i.e., by eliminating integrals).

4. (20 pts) For the ODE $u'(t) = f(t, u)$, consider the scheme,

$$u_{n+1} + \alpha_1 u_n = k\beta_0 f_{n+1} + k\beta_1 f_n,$$

where $u_n \approx u(t_n)$, $f_n = f(t_n, u_n)$, $k = t_{n+1} - t_n$, and $u' = f(t, u)$.

(a) (10 pts) Identify the coefficients α, β that yield a scheme of optimal k -order of accuracy, and identify this order of accuracy.

(b) (10 pts) Determine whether or not this scheme is 0-stable and/or A -stable.

5. (20 pts)

(a) (10 pts) Use von Neumann stability analysis to determine a stability condition for,

$$D^+ u_j^n = D_0 u_j^n,$$

where $D^+ u_j^n = (u_j^{n+1} - u_j^n)/k$, $D_0 u_j^n = (u_{j+1}^n - u_{j-1}^n)/(2h)$, $D_{\pm} u_j^n = \pm(u_{j\pm 1}^n - u_j^n)/h$.

(b) (10 pts) Use von Neumann stability analysis to determine a stability condition for

$$D^+ u_j^n = D_+ D_- u_j^n.$$