

Simple Interest is paid only on the principal amount.

<u>Compound Interest</u> is paid on the principal and the interest added to to the principal.

EX 1: Calculating Compound Interest on \$1000 at 10% interest compounded annually.

After	Interest	Balance
n years		
1	DOO (D1) = DO	1000+100= 1000(1.1)
2	1100(0.1) = 110	$ 100+10= 210= 000(1.1)^{2}$
3	1510 (0.1) = 51	1510+151=[133]=1000(1.1)
Ч	1331 (0.1)=133.1	1331+133.1=[464.1]=1000(1.1)
2	1464.1 (0.1)= 146.41	1464.10+146.41 = 1610.51
:		= 1000(1.1)
n		1000 (1.1)

<u>ex</u> 20

A= 1000(1.1)²⁶ ~ \$6727.50 Compound Interest Formula (when compounding only once per year)

$$A = P(1+APR)^{Y}$$

$$A = Account balance after Y years$$

$$P = Principal amount invested$$

$$APR = annual percentage rate (as a decimal)$$

= number of years

EX 1: Find the balance if you invest \$3000 at an APR of 4% for 12 years.

$$P = $3000$$
, APR = 0.04, $Y = 12 \text{ yrs}$.

 $A = 3000 (1+0.04)^{12}$
 $= 3000 (1.04)^{12} \sim 4803.10

Compound Interest Formula (when compounding more than once a year)

$$A = P(1 + \frac{APR}{n})^{(nY)}$$

A = Amount after Y years

P = Principal amount

APR = Annual interest rate as a decimal

n = number of times compounded each year

Y = number of years of compounding

EX 2: Find the balance if you invest \$3000 for 12 years at 4%, in an account which compounds daily.