

Suppose you invest \$1000 at the end of each year for 5 years in an account that pays 10% interest compounded annually. What is the value after 5 years (<u>future</u> value)?

Year	amount generated		(\$1000 come 4)
1	1000(1+0.1)4	\$1464.10	(\$1000 eams 4 yrs of interest)
2	1000(1+0.1)3	\$1331.00	
3	1000(1+0.1)2	\$1210.00	Lei-
4	$1000(1+0.1)^{1}$	\$1100.00	Noi
5	1000(1+0.1)0	\$1000.00	note: (1.1)=1
Total		\$6105.10	

$$A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$$

A = balance after Y years APR = annual interest rate

n = number of payment periods per year

Y = number of years PMT = regular payment amount

Savings plan formula

(where you deposit/invest same amt of & every period and want to know future value)

(also called future value of an ordinary annuity)

$$A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$$

A = balance after Y years

APR = annual interest rate

n = number of payment periods per year

Y = number of years

PMT = regular payment amount

EX 1: Find the savings plan balance after 5 years with an APR of 2.5% with monthly payments of \$100.

(hidden assumption: compounding occurs monthly, i.e. payment periods match compounding period) Y=S, APR=0.02S, PMT=100, N=12 $A = 100 \left(1 + \frac{0.025}{12} \right)^{12(5)} - 1$ $= 100 \left[(1.002083)^{60} 1 \right]$ 0.002083 $= 100 \left[(1.002083)^{60} 1 \right]$ Note: we put in 100(12)(5) = 46000.

3

PmT= so, n= |2, APR= 0.04
$$A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$$

$$Y = 65 - 78 = 37$$

$$A = SO[(|+ \frac{0.04}{12})^{(12(37))} - 1]$$

EX 3: At age 23 when you graduate, you start saving for retirement. Your investment plan pays an APR of 4.5%. You want to have \$5 million when you retire in 45 years. How much should you deposit monthly?

How much should you deposit monthly?

$$A = PMT \cdot \frac{(1 + \frac{APR}{n})^{nY} - 1}{\frac{APR}{n}}$$

$$Y = 4\sqrt{5}, \quad N = 12$$

$$SOOOOO = PMT \left((1 + \frac{0.045}{12})^{(12(45))} - 1 \right)$$

$$\frac{0.045}{0.045} = \text{PMT} \left[\left(1 + \frac{0.045}{12} \right)^{\left(12(45) \right)} - 1 \right]$$