The Chain Rule
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Recall: Chain rule fory =fg(x)) is y'= f'(g(x))g'(x) = ZL% .
g

Chain Rules

Theorem

Letx = x(¢) and y = y(#) be differentiable at t and let z = f{x,y) be
differentiable at (x(2),y(?)).
Then z = f{x(1),y(¥)) is differentiable at + and
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Let x=x(s¢ andy=y(st) have first partial derivatives at = s, ¢ )
and let z =f{x,y) be differentiable at (x(s,2), y(s,1)) .
Then z has first partial derivatives given by 2
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EX 1 Find 3 givenw =x2y-y2x, x=cos t, y = sin t.
Express the answer in terms of ¢.
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EX 2 Find o given w =In(xty) - In(x-y), x=tes, y = e’

Express the answer insand .

EX3Ifw=xy+x+y x=r+s+tt andy=rst,

ow
find -

ot r=l,s=-1,t=2"

EX 4 Sand is pouring onto a conical pile in such a way that
at a certain instant, the height is 100 inches and
increasing at 3 in/min. The base radius at that instant
is 40 inches and increasing at 2 in/min. How fast is the
volume increasing at that instant?



Implicit Differentiation

Let's go back to y =f{x) and assume that instead of getting y as a
function of x (explicitly), we have F(x,y) = k for any constant, & (i.e. y is
defined implicitly). Then, we just differentiated both sides with respect

to x to get dy/dx .

For example:

y3-2xy+3x=4

Apply the same ideas:

xy? +sec(y+tz) - zx? =1
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EX 5 If ye= +sin(x+z) + e =35, find == and
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