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Begin at the beginning and go on till you come to the end: then stop.

— Lewis Carroll

Consider a linear array of 10 boxes (a so-called “10-board”):

Suppose you have a bag that contains an endless supply of 1-tiles, i.e. square tiles of the
form

,

and an endless collection of 2-tiles of the form

.

Problem 1. How many ways can one tile the 10-board by 1- and 2-tiles? What about the
15-board?

1The title is an anagram (which I will reveal on the next page). Revealing it now would give too much
away.

2An excellent reference for this material (and much more) is the book Proofs That Really Count by Arthur
Benjamin and Jennifer Quinn published by the Mathematical Association of America. (At the time of writing,
a significant portion of the book was freely available from books.google.com .) My notes are shamelessly
stolen from notes by Hugo Rossi available at http://www.math.utah.edu/teacherscircle/schedule.html .
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The answer, as you’ve perhaps now discovered for yourself, rests on a beautiful interpre-
tation of the Fibonacci sequence. Recall that the Fibonacci numbers are defined as follows

f0 = 1

f1 = 1

fn = fn−1 + fn−2 for n ≥ 2.

Now let tn denote the number of tilings of an n-board by 1- and 2- tiles. Then it’s plain to see
that t1 = 1 and t2 = 2. (and we could even make an argument that t0 = 1). So far so good:
the first few fn’s match the first few tn’s. We thus need only show that tn = tn−1 + tn−2 for
all n ≥ 2. We reason as follows. The number of tilings of the n-board can be broken up in
the sum of the number of those tiling that end with a 1-tile plus the number of those that
end with a 2-tile. But if specify that we end with a 1-tile, we are really counting the tilings
of the first n − 1 squares. This number is tn−1. Similarly if we specify that we end with a
2-tile, then we are really counting the tilings of the first n − 2 squares, and that number is
tn−2. So, indeed,

tn = tn−1 + tn−2,

and we conclude that tn = fn for all n.
We are going to spend the next two weeks on all kinds of variations of the above argument3.

Our first one, which you likely have already seen, goes as follows. Suppose that instead of
1- and 2-tiles you have still have the uncolored 1-tiles

but now you also have “colored” 1-tiles of the form

•

Problem 2. How many tilings of the n-board are there by colored and uncolored 1-tiles
which use exactly j colored 1-tiles?

We can argue as above. Let c(j, n) denote the number of tilings. know c(0, n) = c(n, n) = 1
and c(j, n) = 0 if j < 0 or j > n. Meanwhile, by breaking the count of c(j, n) into those
that end with an uncolored tile and those that end with a colored tile, we deduce

c(j, n) = c(j − 1, n − 1) + c(j, n − 1).

Look familiar? It should: this is just the rule one uses to generate Pascal’s Triangle. We
conclude that c(j, n) denotes the jth nonzero entry in the nth row of Pascal’s triangle. (Here
we count from zero. That is, we label the apex of Pascal’s triangle as row 0, and we also
label the first nonzero entry in each row the zeroth entry.)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

3The title of the notes is an anagram of “Variations on a Fibonacci Theme”.
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It isn’t difficult to argue directly that

c(j, n) =

(

n

j

)

where, by definition,
(

n

j

)

=
n!

j!(n − j)!
=

(

n

n − j

)

if 0 ≤ j ≤ n and zero otherwise. But we can also reason as follows. Clearly
(

n
n

)

= 1 for all
n, and we can do a little algebra to check that

(

n

j

)

=

(

n

j − 1

)

+

(

n − 1

j − 1

)

.

Thus we immediately get that c(j, n) =
(

n
j

)

.

Notice that we can think of c(j, n) =
(

n
j

)

as the number of ways of choosing j colored tiles

out of the set of n boxes. This is probably the way that you have seen
(

n

j

)

before. It counts

the way of choosing j elements out of a set of size n.

Let’s return to the original tiling problem and ask a related question:

Problem 3. How many tilings of the n board use exactly j 2-tiles?

We can reason as follows. If we use exactly j tiles, then we have to use exactly n − 2j
1-tiles, and so n− j tiles in all. Of those n− j tiles we need to select j of them to be 2-tiles.
So, indeed,

the number of tilings of the n-board with j 2-tiles is

(

n − j

j

)

.

Now since fn counts the number of all tilings of the n-board,

fn =the number of tilings of the n-board with 0 2-tiles +

the number of tilings of the n-board with 1 2-tiles +

the number of tilings of the n-board with 3 2-tiles + · · · .

So we get the remarkable identity

fn =

(

n

0

)

+

(

n − 1

1

)

+

(

n − 2

2

)

+

(

n − 3

3

)

+ · · · .

What does this look like in terms of Pascal’s Triangle? For instance, take n = 6. We get
that f6 = 13 is the sum of the starred numbers below:

1
1 1

1 2 1
1 3 3 1∗

1 4 6∗ 4
1 5∗ 10 10

1∗ 6 15 20
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More generally, we start with a left-most 1 in the nth row of Pascal’s triangle and make
“knight jumps” moving up one row and over two entries until we run out of room. The sum
of the entries visited in this way is the nth Fibonacci number. Pretty neat, huh?

Problem 4. Prove that
fn+m = fnfm + fn−1fm−1.

(Hint: consider which tilings of the (n + m)-board “break” at the segment separating the n

and (n + 1)st tiles.) This is especially nice if we take m = n,

f2n = f2
n + fn+1fn−1.

Problem 5. Prove
fn = 1 + f0 + f1 + · · · + fn−2

by considering the position of the last 2-tile in a tiling of the n-board.

Problem 6. By considering the location of the last 1-tile, prove

f2n+1 = f0 + f2 + · · · + f2n.

and
f2n = 1 + f1 + f3 + f5 + · · · + f2n−1.

Problem 7. How does the theory change if, instead of considering tilings by 1- and 2-tiles,
we also allow 3-tiles? 4-tiles?

Problem 8. Consider the number of tilings, say t(k, l), of a rectangle of size k-by-l by 1-
and 2-tiles. So, for instance, we have seen t(n, 1) = t(1, n) = fn. Find a recursion formula
for t(k, l). Can you find any hidden identities here?


