Utah Math Circle. Contest 1. Fall 2008.

Name: _____

October 29, 2008

Problem 1. What are the chromatic number and the chromatic polynomial for each of these graphs?

- (3) The cycle, C_n , on *n* vertices.
- (4) Any tree (a tree is a connected graph with no cycles in it).

Problem 2. Here is part of the course schedule for the Math Department for the upcoming Spring semester.

#	Course	Time
6220	Complex Analysis	12:55 p.m 1:45 p.m.
6250	Lie Groups and Lie Algebras	10:00 a.m 10:50 a.m.
6320	Modern Algebra	11:50 a.m 12:40 p.m.
6420	Partial Differential Equations	09:10 a.m 10:30 a.m.
6520	Introduction to Algebraic Topology	10:45 a.m 11:35 a.m.
6620	Analysis of Numerical Methods	11:50 a.m 12:40 p.m.
6720	Applied Complex Variables	12:25 p.m 1:45 p.m.
6740	Bifurcation Theory	12:05 p.m 2:05 p.m.
6780	Mathematical Biology	12:25 p.m 1:45 p.m.
7830	Topics in Commutative Algebra	10:25 a.m 11:55 a.m.
7853	Topics in Geometric Group Theory	10:45 a.m 11:35 a.m.
7890	Topics in Representation Theory	12:55 p.m 1:45 p.m.

How many rooms do we need?

4

Problem 3. How many numbers in the set $\{1, 2, 3, 4, \ldots, 360\}$ have at least one prime divisor in common with 360?

Problem 4. Consider an $n \times n$ table with the following entries from left to right: on the first row, $1, 2, \ldots, n$, on the second row, $(n + 1), (n + 2), \ldots, 2n; \ldots$; on the *n*-th row, $(n - 1)n + 1, (n - 1)n + 2, \ldots, n^2$. For example, if n = 4, the table is

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

We choose n entries of the table such that no two are in the same row or column. (For example, when n = 4, we may choose 1, 7, 12, 14, but not 2, 6, 11, 16.)

What are the possible values of the sum of the n entries we selected?