
Recursion Relations and Qualitative Behavior of Sequences

Aaron McDonald

February 8, 2006

1 Introduction

Sequences play an important role in applied mathematics. They are often used as modeling tools for

certain kinds of populations. When sequences are used in this manner, the general behavior of the sequence

becomes an important quality that we would like to characterize. My goal today is to show you how to make

these behavior assessments. I will reintroduce recursion relations and cobwebbing. Once this is complete,

we will focus our energies on using cobwebbing to reveal the general behavior of sequences. In particular,

we will discover that the behavior of any sequence defined by a recursion relation depends intimately on the

recursion relation and initial condition.

2 What is a Recursion Relation?

A sequence is a particular ordering of objects that is indexed by the natural numbers (N) or the non-

negative integers (Z+ + {0}). Sequences can be composed of real numbers, functions, or sets and are often

expressed as strings of these objects. Sometimes sequences can be expressed more formally by constructing

a recursion relation. To do so, we let n be any natural number and an be the nth term of some sequence.

a1, a2, a3, . . . , an−1, an, an+1, . . .

A recursion relation defines the process one must go through to get from any term of the sequence, say an,

to the next one, an+1. This process may depend on any or all of the previous sequence terms (a1, a2, . . . , an)
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as well as the index variable n. In the language of mathematics, recursion relations take on the form

an+1 = f(an, an−1, . . . , a1, n)

where f is a function that defines the before-mentioned process. The function f is sometimes called an

updating function as it uses known information about the sequence to produce new terms of the sequence.

an��
��

f(an, an−1, . . . , a1, n) � an+1��
��

Recursion relations alone cannot be used to represent a sequence. You must also provide additional

information. An initial condition is any information that must be specified so that a recursion relation

can be used to fully represent a sequence of interest.

Example 1. Find the first four terms of the sequence generated by an+1 = a2
n beginning with

a1 = 3
2 . Note that the updating function here is f(an) = a2

n and the initial condition is a1 = 3
2 .

Sequence Term Sequence Value

an an+1 = a2
n, a1 = 3

2

a1
3
2

a2 (3
2 )2 = 9

4

a3 (9
4 )2 = 81

16

a4 (81
16

)2 = 6561
256

...
...

Solution: an+1 = a2
n with a1 = 3

2 represents the sequence 3
2 , 9

4 , 81
16 , 6561

256 , . . . .

Example 2. Find the first four terms of the sequence generated by an+1 = a2
n beginning with

a1 = 1. Note that the updating function here is f(an) = a2
n (again) and the initial condition is now a1 = 1.
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Sequence Term Sequence Value

an an+1 = a2
n, a1 = 1

a1 1

a2 (1)2 = 1

a3 (1)2 = 1

a4 (1)2 = 1

...
...

Solution: an+1 = a2
n with a1 = 1 represents the sequence 1, 1, 1, 1, . . . .

Aside: Note that in the above example we could have used other recursion relations to represent this

sequence. For instance, an+1 = an beginning with a1 = 1 would have done the trick. It will become clear to

you shortly why I chose to use an+1 = a2
n instead.

Example 3. Find the first four terms of the sequence generated by an+1 = a2
n beginning with

a1 = 1
2 . Note that the updating function here is f(an) = a2

n (again) and the initial condition is now a1 = 1
2 .

Sequence Term Sequence Value

an an+1 = a2
n, a1 = 1

2

a1
1
2

a2 (1
2 )2 = 1

4

a3 (1
4 )2 = 1

16

a4 ( 1
16

)2 = 1
256

...
...

Solution: an+1 = a2
n with a1 = 1

2 represents the sequence 1
2 , 1

4 , 1
16 , 1

256 , . . . .

Let’s look back at our work so far. We have shown that the recursion relation an+1 = a2
n generates the

sequences
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3
2 , 9

4 , 81
16 , 6561

256 , . . .

1, 1, 1, 1, . . .

1
2 , 1

4 , 1
16 , 1

256 , . . .

when we prescribe the initial conditions to be a1 = 3
2 , a1 = 1, and a1 = 1

2 respectively. Shown in fig-

ure 1 is graph of these sequences. There is something interesting to think about here. Each sequence
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Figure 1: Graph of an+1 = a2
n with the initial conditions a1 = 3

2 , a1 = 1, and a1 = 1
2

was generated from the same recursion relation, yet each has a very different feel to it. The sequence

3
2 , 9

4 , 81
16 , 6561

256 , . . . is increasing everywhere; the sequence 1
2 , 1

4 , 1
16 , 1

256 , . . . is decreasing everywhere; the se-

quence 1, 1, 1, 1, . . . remains constant always. This observation suggests that given some recursion relation

an+1 = f(an, an+1, . . . , a1, n), the initial condition(s) we prescribe can have a resounding affect on the values

the sequence takes on and the general trends the sequence exhibits.

Example 4. Find the first four terms of the sequence generated by an+1 = 11
10a2

n beginning with

a1 = 1. Note that the updating function here is f(an) = 11
10a2

n and the initial condition is a1 = 1.
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Sequence Term Sequence Value

an an+1 = 11
10a2

n, a1 = 1

a1 1

a2
11
10 (1)2 = 11

10 (1) = 11
10 = 1.1

a3
11
10 (11

10 )2 = 1331
1000 = 1.331

a4
11
10 (1331

1000 )2 = 19487171
10000000 = 1.9487171

...
...

Solution: an+1 = a2
n with a1 = 1 represents the sequence 1, 1.1, 1.331, 1.9487171, . . . .

The purpose of Example 4 is to illustrate what can happen to sequence behavior when we alter the

updating function, f , slightly. Notice that the sequences defined in Example 2 and Example 4 share the

same initial condition (a1 = 1) but have different updating functions (f(an) = a2
n and f(an) = 11

10a2
n). We

found the resulting sequences to be

1, 1, 1, 1, . . .

1, 1.1, 1.331, 1.9487171, . . .

Again, we observe that these two sequences fail to share a general trend (even though their recursion

relation representations are very similar). The sequence 1, 1, 1, 1, . . . remains constant while the sequence

1, 1.1, 1.331, 1.9487171, . . . appears to be increasing always. Consequently, we shouldn’t be surprised if

sequences generated by slightly different recursion relations behave differently.

The goal of this session is to continue thinking about the dependence of sequence behavior on initial

conditions and updating functions. Instead of generating sequences explicitly using the recursion relation

(coupled with an initial condition), we will learn a graphical method that reveals the general behavior of a

sequence. This method focuses on revealing the relationship between consecutive terms without calculating

these terms explicitly.
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3 Cobwebbing Revisited

Cobwebbing is a graphical method that can be used to reveal the behavior of recursion relations taking

on the form an+1 = f(an) when coupled with any initial condition a1. The general idea is as follows:

an+1

an

an
a1

a2
a1 a2

a2

a3
a2 a3

f( )

( , )

, )  (

Figure 2: Graph of an+1 = f(an)

1. To find a2 from a1, we use the fact that a2 is the result of applying the updating function f to a1. If

we were to graph the updating function, we could visually identify a2 as the y-coordinate associated

with the point on the graph of the function directly above a1 (see Figure 2).

2. Second, the axes of the above graph have special meaning. The horizontal axis represents the current

term of the sequence while the vertical axis respresents the updated term. To get a3 from a2, we need

to somehow get a2 from the vertical axis to the horizontal axis while preserving its value. Once we

have made this move, we can identify a3 as y-coordinate associated with the point on the graph of the

function directly above a2 (see Figure 2).

3. What happens if we reflect terms from the vertical axis off the diagonal line an+1 = an? Consider
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an+1

an

an
a1

a2

a2

a3
a2 a3

a1 a2( )

f( )

, )  (

,

Figure 3: Graph of an+1 = f(an) and diagonal line an+1 = an

reflecting a2 from the vertical axis off this line. Notice in Figure 3 that this reflection places a2 on the

horizontal axis while preserving its value.

4. Now for the trick: move the point (a1, a2) horizontally until it intersects the diagonal line and then

move vertically until you intersect the updating function (see Figure 4). These directions move the

point (a1, a2) horizontally to (a2, a2) and vertically to (a2, a3). This trick takes advantage of our

knowledge of a2 to expose a3. Cool, huh!?!

5. Repeat the previous step with a3 to get a4 (and in general with an to get an+1).
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an+1

an

an
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,

  
,

Figure 4: Cobwebbing Technique

an

1 2 3 54

a 1

n

Figure 5: Sketch of an

If we are careful to mark the value of each sequence term on the horizontal axis as we go, we can use this

information to provide a sketch of the sequence. Doing so will expose the general behavior of the sequence

without explicitly calculating terms of the sequence (see Figure 5).
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Example 5. Discuss the behavior of the sequences generated by an+1 = a2
n when coupled with the

initial conditions a1 = 3
2 , a1 = 1, and a1 = 1

2 respectively.
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Figure 6: Graph of an+1 = a2
n
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PROBLEM SET 2

• We are going to first think about linear updating functions: f(an) = man + b for some slope m and

y-intercept b.

1. Discuss the behavior of the sequences generated by an+1 = 4an − 9 when coupled with the initial

conditions a1 = 3, a1 = 5, and a1 = 0 respectively.
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Figure 7: Graph of an+1 = 4an − 9
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2. Discuss the behavior of the sequences generated by an+1 = 1
2an + 2 when coupled with the initial

conditions a1 = 4, a1 = 9
2 , and a1 = −1 respectively.
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Figure 8: Graph of an+1 = 1
2an + 2
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3. Discuss the behavior of the sequences generated by an+1 = − 1
2an + 1 when coupled with the

initial conditions a1 = 0, a1 = 2, and a1 = 3 respectively.
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Figure 9: Graph of an+1 = − 1
2an + 1
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4. Discuss the behavior of the sequences generated by an+1 = −3an +6 when coupled with the initial

conditions a1 = 1
2 , a1 = 3

2 , and a1 = 5
2 respectively.
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Figure 10: Graph of an+1 = −3an + 6
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5. Discuss the behavior of the sequences generated by an+1 = an + 1 when coupled with any initial

condition.
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Figure 11: Graph of an+1 = an + 1
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6. Discuss the behavior of the sequences generated by an+1 = an when coupled with any initial

condition.
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Figure 12: Graph of an+1 = an
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• Now for some non-linear updating functions!

1. Discuss some possible behaviors of sequences generated by an+1 = −a2
n + 1. This is more of an

exploratory exercise. Pick some initial conditions and see what happens!
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Figure 13: Graph of an+1 = −a2
n + 1
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2. Discuss some possible behaviors of sequences generated by an+1 = a3
n. Again, pick some initial

conditions and see what happens.
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Figure 14: Graph of an+1 = a3
n
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3. Discuss some possible behaviors of sequences generated by an+1 = ane1− an
10 . Again, pick some

initial conditions and see what happens.
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Figure 15: Graph of an+1 = ane1− an
10
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