
Diffusion Model

Math Circle, October 23, 2002

Here is the directed graph corresponding to a model for the settling of silt in a barrel of water. There are eight levels from the top to the bottom of the barrel. For each level and each time increment, 3/10 of the mud moves down a level (if possible), 2/10 moves up a level (if possible), and the remainder stays in the same level

Here is the transition matrix which in entry i of column j is the fraction of material in level j which moves to level i during a single time increment.

	.7	.2	0	0	0	0	0	0
	.3	.5	.2	0	0	0	0	0
	0	.3	.5	.2	0	0	0	0
	0	0	.3	.5	.2	0	0	0
<i>A</i> :=	0	0	0	.3	.5	.2	0	0
	0	0	0	0	.3	.5	.2	0
	0	0	0	0	0	.3	.5	.2
	0	0	0	0	0	0	.3	.8

	.55	.24	.04	0	0	0	0	0	.457	.242	.068	.008	0	0	0	0
	.36	.37	.20	.04	0	0	0	0	.363	.317	.186	.060	.008	0	0	0
	.09	.30	.37	.20	.04	0	0	0	.153	.279	.305	.186	.060	.008	0	0
A ²	2 0	.09	.30	.37	.20	.04	0	0	.3	.135	.279	.305	.186	.060	.008	0
A	= 0	0	.09	.30	.37	.20	.04	0	$A^{\circ} = 0$.027	.135	.279	.305	.186	.060	.008
	0	0	0	.09	.30	.37	.20	.04	0	0	.027	.135	.279	.305	.186	.072
	0	0	0	0	.09	.30	.37	.26	0	0	0	.027	.135	.279	.323	.282
	0	0	0	0	0	.09	.39	.70	0	0	0	0	.027	.162	.423	.638

	.3925	.2328	.0848	.0176	.0016	0	0	0		.34459	.22034	.09424	.02624	.00432	.00032	0	0
	.3492	.2869	.1744	.0696	.0160	.0016	0	0		.33051	.26561	.16546	.07448	.02240	.00400	.00032	0
	.1908	.2616	.2641	.1720	.0696	.0160	.0016	0		.21204	.24819	.23597	.15970	.07400	.02240	.00400	.00032
4	.0594	.1566	.2580	.2641	.1720	.0696	.0160	.0016	15	.08856	.16758	.23955	.23525	.15970	.07400	.02240	.00448
A	.0081	.0540	.1566	.2580	.2641	.1720	.0696	.0184	А	.02187	.07560	.16650	.23955	.23525	.15970	.07472	.02864
	0	.0081	.0540	.1566	.2580	.2641	.1756	.0948		.00243	.02025	.07560	.16650	.23955	.23633	.16906	.11096
	0	0	.0081	.0540	.1566	.2634	.3019	.2902		0	.00243	.02025	.07560	.16812	.25359	.29069	.29254
	0	0	0	.0081	.0621	.2133	.4353	.5950		0	0	.00243	.02268	.09666	.24966	.43881	.56306

	.30732	.20736	.099060	.033264	.007504	.001024	.000064	0
	.31104	.24854	.15820	.077052	.027296	.006576	.000960	.000064
	.22289	.23729	.21553	.14924	.075660	.027200	.006576	.001056
A ⁶ =	.11227	.17337	.22387	.21344	.14910	.075660	.027344	.008064
A =	.037989	.092124	.17024	.22365	.21344	.14932	.077892	.037856
	.007776	.033291	.091800	.17024	.22397	.21679	.16508	.12258
	.000729	.007290	.033291	.092286	.17526	.24763	.28382	.29217
	0	.000729	.008019	.040824	.12776	.27581	.43825	.53821

	.27733	.19486	.10099	.038695	.010712	.0020320	.0002368	.0000128
	.29228	.23394	.15192	.078354	.031031	.0090352	.0018144	.0002432
	.22721	.22788	.20000	.14043	.075839	.030705	.0090448	.0021600
,7	.13060	.17629	.21064	.19623	.13994	.075853	.031224	.011920
A	.054230	.10473	.17063	.20990	.19626	.14072	.080166	.045863
	.015430	.045741	.10363	.17067	.21107	.20272	.16268	.13108
	.0026973	.013778	.045790	.10538	.18038	.24401	.27908	.29050
	.0002187	.0027702	.016402	.060346	.15480	.29493	.43576	.51822
	.25259	.18319	.10107	.042758	.013705	.0032295	.00052864	.00005760
	.27479	.22100	.14627	.078871	.033897	.011269	.0027872	.00055744
	.22741	.21939	.18770	.13298	.075216	.033233	.011311	.0035369
A ⁸ =	.14431	.17746	.19946	.18222	.13198	.075280	.034357	.015781
A =	.069379	.11440	.16924	.19796	.18232	.13365	.081985	.052724
	.024524	.057045	.11216	.16938	.20049	.19237	.16121	.13740
	.0060216	.021165	.057264	.11596	.18447	.24181	.27549	.28822
	.00098415	.0063496	.026859	.079890	.17794	.30915	.43233	.50173

	.23177	.17243	.10000	.045705	.016373	.0045144	.00092750	.00015181	
	.25865	.20934	.14100	.078859	.036104	.013250	.0038146	.0010034	
	.22501	.21149	.17762	.12660	.074174	.035053	.013363	.0050917	
$A^{9} =$.15426	.17743	.18989	.17059	.12501	.074343	.036969	.019496	
A* =	.082885	.12185	.16689	.18753	.17085	.12789	.083540	.058576	
	.034281	.067076	.11830	.16727	.19184	.18464	.16030	.14216	
	.010565	.028966	.067653	.12477	.18797	.24045	.27258	.28568	
	.0025938	.011429	.038667	.098699	.19770	.31987	.42852	.48785	

	.21397	.16257	.098199	.047765	.018682	.0058100	.0014122	.00030695
	.24385	.19870	.13602	.078459	.037799	.014990	.0048584	.0015656
	.22095	.20403	.16908	.12107	.072922	.036369	.015219	.0067460
A ¹⁰ =	.16121	.17653	.18161	.16078	.11893	.073266	.039202	.022991
A =	= .094574	.12757	.16407	.17840	.16130	.12318	.084919	.063569
	.044118	.075885	.12274	.16484	.18476	.17878	.15973	.14579
	.016085	.036891	.077052	.13231	.19107	.23959	.27008	.28305
	.0052445	.017833	.051229	.11639	.21455	.32803	.42458	.47599

Can you answer the following questions, assuming our time increment is 1 hour?

(1) If 100 grams of silt/dye started at level 1 at time 0, how many grams are there in each level 10 hours later?

Answer: the amount in level i is the i^{th} entry in the first column of A^{10} , times 100. For example, there will be about 21 grams in level 1.

(2) If there were 100 grams in level 1 and 100 grams in level 3 at time zero (and no grams in each other level), how are the 200 grams distributed 10 hours later?

Answer: Add 100 times the entries in the first column to 100 times the entries in the third column, of A^{10} .

(3) Suppose that at time zero there are x₁, x₂, x₃, x₄, x₅, x₆, x₇, x₈ grams in each of the 8 levels. Is there a way you could have your calculator compute the resulting amounts in each level after 10 hours? Can you explain why?

Answer: multiply the A^{10} matrix by a very skinny matrix (with 1 column and 8 rows) which has the x_i values down the rows. (This kind of skinny matrix is also called a vector.)

Here are some very large powers of the incidence matrix:

	.020322	.020322	.020322	.020323	.020322	.020322	.020322	.020322
	.030482	.030482	.030484	.030484	.030484	.030482	.030484	.030482
	.045725	.045725	.045727	.045727	.045726	.045725	.045726	.045725
$A^{1000} =$.068585	.068585	.068586	.068587	.068586	.068585	.068586	.068585
A =	.10287	.10287	.10288	.10288	.10288	.10287	.10288	.10287
	.15431	.15431	.15432	.15432	.15432	.15431	.15432	.15431
	.23147	.23147	.23148	.23148	.23148	.23147	.23148	.23147
	.34719	.34719	.34720	.34720	.34719	.34719	.34719	.34719

	.020323	.020323	.020322	.020322	.020322	.020322	.020322	.020322
	.030484	.030484	.030484	.030484	.030484	.030484	.030483	.030484
	.045727	.045727	.045727	.045726	.045726	.045726	.045725	.045726
<u>⊿</u> 1001	.068587	.068589	.068586	.068586	.068586	.068586	.068586	.068586
A :	.10288	.10288	.10288	.10288	.10288	.10288	.10288	.10288
	.15432	.15433	.15432	.15432	.15432	.15432	.15432	.15432
	.23148	.23148	.23148	.23148	.23148	.23148	.23147	.23148
	.34720	.34721	.34720	.34719	.34719	.34719	.34719	.34719

(4) If you started with 100 grams of silt, distributed in any way you wanted among the 8 levels, how will the silt be distributed after a very very long time?

Answer: The matrix stabilizes after a long time, i.e. continued multiplying by A leaves it unchanged. Since each column is the same in the stabilized matrix, it doesn't matter where the silt/dye started, it all eventually gets distributed in the same way. There will be about 2 grams in level 1, 3 in level 2, 4.5 in level 3, 6.9 in level 4, 10 in level 5, 15.4 in level 6, 23 in level 7 and 34.7 in level 8!