
MATH CIRCLE-PART I

TOPIC: Unique Factorization

We start with something familiar. What is the factorization of 120 into the
smallest possible components?

Definition The integers are the numbers . . . ,−2,−1, 0, 1, 2, 3, . . . . We de-
note this set of numbers by Z.

Definition A prime number is a positive integer greater than 1 whose only
positive divisors are 1 and itself.

Example We learned how to factor integers in elementary school: 120 =
23 · 3 · 5. Although we could make various tree diagrams of factorization, the
end result would be the same.

This is a result of the Fundamental Theorem of Arithmetic.

Fundamental Theorem of Arithmetic Every integer greater than 1 is a prime
or a product of primes. This product is unique, except for the order in which
the factors appear; thus, if n = p1p2 · · · · · ps and n = q1q2 · · · · · qt, where all
the p’s and q’s are primes, then t = s and after renumbering the q’s, we have
pi = qi, for all i.

This basically says that the integers, Z, have unique factorization. We
can extend this idea to a larger class of objects than just the integers. Before
doing so, we’ll provide an example where unique factorization fails.

FACTORIZATION OF POLYNOMIALS

Next, we want to generalize the idea of Unique Factorization beyond the
integers, Z, to polynomials. First we need a couple of definitions.

Definition An element with a multiplicative inverse is called a unit.

Definition An element r is called irreducible if whenever r = ab, the a or b

must be a unit.

Example (prime, but not irreducible) In Z6, called “the integers modulo 6”, we
have the numbers {0,1,2,3,4,5}, which represent the only possible remainders
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when an integer is divided by 6. Note that 2 is a prime number, but 2 is not
irreducible, since 2 = 2 · 4.

Example (irreducible, but not prime) In Z[
√
−5], 2 +

√
−5 is irreducible, but

not prime.

Recall that we can factor a polynomial 2X3 + 12X2 + 16X into 2X(X +
4)(X + 2). However, we can not factor X2 + 1 over Z. We would need to
introduce the complex numbers in order to factor this second polynomial.
When a polynomial can not be factored, we say that it is irreducible.

Unique Factorization in Z[X] Every polynomial in Z[X] that is not the zero
polynomial or a unit in Z[X] can be written in the form cp1(X)p2(X) · · · · ·
pm(X), where c is a constant and the pi(X)′s are irreducible polynomials of
positive degree. Furthermore, if

cp1(X)p2(X) · · · · · pm(X) = dq1(X)q2(X) · · · · · qn(X),

then c = ±d, n = m, and after renumbering the q(x)′s, pi(x) = ±qi(x), for
i = 1, 2, . . . , m.

In the above example, c = 2, p1(X) = X − 0, p2(X) = X + 4, and p3(X) =
X + 2.

We need not restrict ourselves to polynomials over Z. It is common to con-
sider polynomials with coefficients over Q or C .

In our second example, we can not factor X2 + 1 over Z or Q , but we CAN
factor it over C , into (X −

√
−1)(X +

√
−1) .

Let’s consider factorization over Q .

Eisenstein’s Irreducibility Criteria (1850) Let f(X) = anXn + an−1X
n−1 +

· · ·+ a1X + a0 ∈ Z[X]. If there is a prime p such that p†an, p|an−1, . . . , p|a0,

and p2†a0, then f(X) is irreducible over Q .

Example 3X5 + 15X4 − 20X3 + 10X + 20. We can’t choose p = 3 since
3 divides the leading coefficient. Similarly, we can’t choose p = 2 since 4
divides the constant term 20. So let p = 5.

Non-Example: Eisenstein’s doesn’t always work X2+1 Note that a2 = 1, a1 =
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0, and a0 = 1. Let p be any prime. Then p does not divide a2 or a0, but it
does divide a1. Moreover, p2 does not divide a0. Therefore, by Eisenstein’s
Criteria, X2 + 1 is irreducible over Q .

HISTORY

Extensions of Z have interested mathematicians for centuries. For example,
Gauss proved that the elements of Z[i] admit unique factorization into prime
elements, just like the ordinary integers, and he exploited this fact to prove
other results.

Besides Gauss, other number theorists like Euler, Dirichlet, and Kummer
realized the usefulness of adjoining solutions of polynomial equations to Z
and used this idea to prove some special cases of Fermat’s (1601-1665) Last
Theorem. They used Z[ζp], where ζ is a pth root of unity.

Definition The pth roots of unity are the roots of the polynomial xp − 1.

Example The second roots of unity are ±1. They are the only solutions to
the equation x2 − 1 = 0.

Example The third roots of unity are 1, −1

2
+

√
−3

2
, and −1

2
−

√
−3

2
. Again,

these are the solutions to the equation x3 − 1 = 0. We have x3 − 1 =
(x − 1)(x2 + x + 1), and we use the quadratic formula to determine the
complex roots.

Number theorists were able to solve many particular cases of Fermat’s Last
Theorem. They thought that they also had a proof for other n, but it was
pointed out that they were assuming unique factorization of the cyclotomic
integers, which is false in certain cases. The basic idea was to write:

xp = zp − yp =

p−1∏

j=0

(z − yζj
p).

In particular, for p = 23, Z[ζp] does not have unique factorization.

It has been conjectured that Fermat’s famous “proof” consisted of an idea
similar to the one given by number theorists of the nineteenth century, mis-
takenly assuming the existence of unique factorization.
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