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Motivational Problems

Let’s start with the following problems.

Exercise 1

Suppose the Math Department is creating its schedule of classes, and has asked us to help.
We need to schedule Algebra, Topology, Complex Analysis, Differential Equations, Math
Biology, Applied Mathematics, and Numerical Methods with the following constraints:

e Algebra and Topology cannot be at the same time.

e Differential Equations, Math Biology, Applied Mathematics, and Numerical Methods
must all be at different times.

e Complex Analysis cannot be at the same time as any of the other classes, except Math
Biology.

How many different class periods do we require? How should the classes be scheduled?

Exercise 2

We are building habitats for a zoo. We need housing for each of the following animals: An-
telope, Beaver, Coatimundi, Elephant, Flamingo, Giraffe, Koala, Lion, Snake, and Monkey.
Furthermore:

e Monkeys cannot be with Elephants or Koalas.

Elephants, Giraffes, and Antelope all need separate habitats.

Lions can share their homes only with snakes.

Beavers and Flamingos don’t get along; neither do Elephants and Flamingos.
e Snakes scare Monkeys, Coatimundi, Koalas, and Beavers.
e Elephants and Giraffes both have trouble seeing snakes, and might step on them.

How many habitats should we build?



Introduction to Graphs

The above problems have something in common: they can be solved in the realm of mathe-
matics known as Graph Theory. In particular, they can each be solved by coloring a graph.
First we need to know what a graph is, then we can figure out how to color it.

The graphs that we will be talking about are not the graphs of functions, but are some-
thing entirely different. Roughly speaking, a graph is a collection of dots connected by line
segments. The dots are called vertices and the line segments are called edges. Here is an
example of a graph.

If two vertices have an edge joining them, we call them adjacent.

Notice that some of the adjacent vertices in the above graph have more

than one edge between them. That’s okay, we call those multiple edges.

One of the vertices is even adjacent to itself! That edge is called a loop.

If a graph does not contain any loops or multiple edges then we call it

a simple graph. We will mostly be talking about simple graphs. Notice

also that one of the edges in the above graph crosses another edge. That is okay as well.

There is not a vertex where they cross, we just have to imagine one edge crossing above the
other.

If we have two graphs G and H, and we can bend one of the graphs around so that it
looks like the other graph, we say they are isomorphic. This is just a fancy way of saying
that they are the same graph. If it helps, just think of the edges in the graph as pieces of a
rubber band.

Exercise 3
Which of the following graphs are isomorphic to one another?
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One tool we can use to decide whether or not two graphs are the same is by looking at

the number of edges attached to a particular vertex. This is called the degree of the vertex.
There are of course special types of graphs. First, there’s the graph

that has n vertices but no edges (it’s only dots). This is called the null

graph and is denoted N,,. An important point here is that there is nothing

in our definition of graph to suggest that a vertex need be adjacent to

another vertex. A related graph is the complete graph on n vertices,

denoted K,. The null graph N,, has no edges, but the complete graph

K, has all possible edges, in that every vertex is adjacent to every other

vertex. Here is a picture of K.



Coloring Graphs

Now that we know what a graph is, let’s try to figure out what it means to color one. When
we color a graph what we are really coloring are the vertices. But we want to color the
vertices so that if two vertices share an edge, they have different colors. As mathematicians,
we are less interested in what colors we use as we are the number of colors we use. If we
can color a graph G (as prescribed above) using k colors, then we say that G is k-colorable.
Note that we don’t necessarily have to use all k£ of the colors, but we do need to color all
of the vertices. For instance, if G has n vertices, then certainly G is n-colorable. We just
color every vertex a different color. But this is not very interesting. We might have very
big graphs, but a very small box of crayons. Therefore, we are more interested in the least
number of colors we need. If k is the smallest number of colors we need to color G, then we
say that the chromatic number of G is k, and we write this as x(G) = k.

Exercise 4
What is x(K,)?

Exercise 5
Which graphs have chromatic number 17 27 37 47

Exercise 6

Draw some graphs where the largest vertex degree is 2, 3, 4. What do you notice about the
chromatic numbers for those graphs? Is there an upper limit as to how large x(G) can be?
We already know that it must be less than or equal to the number of vertices. Can we get
a better estimate?

Back to Scheduling and Zoos

Look back on Exercises 1 and 2. Notice that we can use Graph Coloring to solve these
problems. Draw a graph with a vertex for each course we have to schedule, and connect
two courses with an edge if they must be at different times. Then if we color the vertices,
that gives us a schedule with one class hour for each color we use. Similarly, we can arrange
habitats in the zoo.

Exercise 7
Draw the graphs for Exercises 1 and 2. Color these graphs. How many colors did you use?
What does this tell us?

Exercise 8
Find the chromatic number for each of the following graphs and compare with the estimate
from Exercise 6




Exercise 9
In the following table of graphs, which have chromatic number 27 chromatic number 37
chromatic number 47

. — /N A




Chromatic Polynomials

Now we will associate to each graph a function that helps us to solve these coloring problems.
This function will also help us to tell when two graphs are different. For this section, we will
restrict our attention to simple graphs.

Let’s start with a simple graph G. Then we define the function Pg(x) associated to G by
declaring that Pg(z) is the number of different ways we can color G with z colors (so that
adjacent vertices have different colors). We will see shortly that Pg(z) is a polynomial and
we will call it the chromatic polynomial for G. First notice that if G and H are two graphs
with different chromatic polynomials, then they must be different graphs. However, we will
also see later that it is possible to have two different graphs with the same polynomial.

Exercise 10
What is Pg(x) for each of the following graphs?
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Exercise 11
What is the chromatic polynomial Py, (x) of the null graph N,,?

Exercise 12
What is the chromatic polynomial Pk, (x) of the complete graph K7

Exercise 13
If £ < x(G) what is Pg(k) equal to?



Look at the following portion of the graph GG with the edge e adjoining vertices v and w.

There are two operations that we can do to G to get a new graph. We could simply delete
the edge e. The new graph, which we denote G — e, looks just like GG, except it is missing
the edge e. The second operation is called contracting e and yields a graph G \ e, which
we get by shrinking the edge e until the two vertices v and w become the same vertex. If
doing this gives us multiple edges, we just simplify by deleting all but one of them. Here are
the graphs G — e and G \ e:
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Exercise 14
Consider the graph G — e.

1. How many ways can we color G —e with z colors so that v and w have different colors?
Hint: What happens if we put e back in? How is it related to Pg(x)?

2. How many ways can we color G — e with = colors so that v and w have the same color?

3. How many ways can we color G — e with z colors; i.e., what is Pg_.(x)?



Notice that if we continue to delete and contract edges and use the formula from Ex-
ercise 14, then eventually we will end up with null graphs. We know from Exercise 11
that Py, (z) is ™. Therefore, we are adding up monomials. This shows that Pg(z) is a
polynomial!

Here is an example of how we might compute Pg(z) by reducing to smaller graphs whose
polynomial we know already. The edges which we remove and contract at each stage are
dashed.
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Therefore, if G = @, then
Po(r) = z(z—1)* =3z(z — 1%+ 22(z — 1)* + 2(x — 1)(z — 2)
= 2% — T2 4+ 182" — 202” + 8u.

Exercise 15
Find the chromatic polynomials for each of the graphs from Exercise 7. What do these
polynomials tell us about scheduling and zoos?

Exercise 16
1. Find the chromatic polynomials of the six connected simple graphs on four vertices.

2. What do you notice about the coefficients of these polynomials?
3. What do you notice about the degree of the polynomial?

Exercise 17
1. Find Ps(z) if G = . (This graph is called the 5-cycle and is denoted Cj).

2. Show that the chromatic polynomial Pg, (x) of the n-cycle is (x — 1)" + (=1)"(z — 1).

Exercise 18
Find three different graphs with the chromatic polynomial z° — 4x* + 623 — 422 + .



A graph G is said to be connected if you can get from every vertex v to every other
vertex w by following a sequence of edges. We say that H is a component of G if H is a
connected graph and there are not any larger connected graphs which contain H in GG. Here
is an example of a graph with three components. (What are they?)

Exercise 19

If the graph G has two components H and K, and we know their chromatic polynomials
Py (z) and Pk (x), how can we quickly calculate Pg(x)? What if G has many components?

Exercise 20
In light of Exercise 19, what is the degree of the smallest-degree term in Pg(x)?



