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There are three kinds of people in the world:
those who can count and those who can’t.

Everyone knows what infinity is: it’s something that goes on and on forever. But it’s
often necessary to make a more precise definition. That is the first goal of these notes.

By way of motivation, consider the famous infinite hotel. It has rooms numbered 1, 2,
3, and so on; but there is no largest room number. Even when all the rooms are occupied,
the proprietor still displays the “Vacancy” sign. The reason? If a new guest arrives, the
proprietor simply tells all the current occupants to move to the next higher room number.
More precisely the proprietor tells the occupant of room n to move to room n + 1. After
this is done for all n, each existing guest has his own room, and room number 1 is vacant
for the new guest to occupy.

This trick could never work with a finite hotel — when all the room are filled, there is no
way to accommodate a new guest (without putting two guests in the same room). We are
going to define the notion of infinity so that the converse also holds: this trick will always

work with an infinite hotel. First we need a few preliminary definitions.

Definition Suppose S and T are sets and that f : S → T is a function. We say that f is
one-to-one if f never sends two points of S to the same point in T ; that is,

f is one-to-one if whenever f(a) = f(b), then a = b.

We say that f is onto if every point of T is hit by f ; that is

f is onto if for all t ∈ T , there exists s ∈ S such that f(s) = t.

If f : S → T is one-to-one and onto, we say that f puts S and T in one-to-one correspondence.
A function which is one-to-one is sometimes called injective; one that is onto is often called

surjective; and one that is one-to-one and onto is called bijective. This is simply a matter of
terminology.

Exercises

1. Write N for the set of natural numbers {1, 2, 3, . . . }. Consider the function f : N → N

defined by f(n) = n + 1. Is f onto? Is f one-to-one?

2. Write Z for the set of integers {. . . ,−2,−1, 0, 1, 2, . . . }. Consider the function f : Z → Z

defined by f(n) = n + 1. Is f onto? Is f one-to-one?

3. Consider the function f : N → N defined by f(n) = n2. Is f onto? Is f one-to-one?

4. Consider the function f : Z → Z defined by f(n) = n2. Is f onto? Is f one-to-one?
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5. The following represent graphs of functions from the real numbers R to R. Decide which
are one-to-one, which are onto, which are neither, and which are both.

6. Find a one-to-one onto map

{0, 1, 2, 3, . . . } −→ {1, 2, 3, . . . }

7. Find a one-to-one onto map from the real numbers x such that x ≥ 0 to the set of real
number x such that x > 0.

8. Find a one-to-one onto map from the real numbers x such that 0 ≤ x ≤ 1 to the set of
real number x such that 0 < x < 1.

Let’s return to the notion of infinity. We can now make a precise definition.

Definition. A set S is called infinite if there is a map f : S → S such that f is one-to-one
but not onto. Here is another way to say the same thing. A set S is called infinite if and
only if it there is a subset T ⊂ S with T 6= S and a one-to-one map f : S → T .

This definition captures our intuitive notion of what it means to be infinite. For example
look as the set of rooms in the infinite hotel S = {1, 2, 3, . . . }. Define a map f : S → S
by f(j) = j + 1. (This is the map that the proprietor used.) This is clearly one-to-one: if
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f(j) = j(k), then j + 1 = k + 1 and j = k. But it’s not onto since there is no j such that
f(j) = 1. So the set of rooms in the infinite hotel is indeed infinite!

The next issue we want to address is the notion of the “size” of a set. First suppose S
and T are finite sets. Then S and T have the same number of elements if and only if there is
a one-to-one and onto map between them. (Stop and make sure that you really understand
this assertion.) So, in the case of finite sets, we say that S and T have the same size if
and only if there is a bijection between S and T . Now we may simply extend the definition
to arbitrary sets: two sets S and T have the same size if there is a one-to-one onto map
between them. (As a matter of terminology the technical word that is often used for “size”
is “cardinality.” For example, we say that two sets have the same cardinality if there is a
bijection between them.)

It may surprise you that there are different sizes of infinite sets. It’s convenient to intro-
duce a little more terminology at this point. Let’s write Z for the set {. . . ,−2,−1, 0, 1, 2 . . . }.
We say that a set S is countable if there exists an onto map f : N → S. For example, if S
is finite, we can simply label its elements {s1, s2, . . . , sN} and then the function f can be
defined as

f(j) =

{

sj if 1 ≤ j ≤ N

s1 otherwise.

So finite sets are countable. Of course N is countable too. To test your understanding, it’s
a good exercise to verify that Z is also countable.

Are there other infinite sets that are uncountable? Here is a beautiful trick (called Cantor’s
diagonal argument) to show that the set R of real numbers is uncountable. In fact we will
show that the interval of real numbers between 0 and 1 is uncountable. Suppose f is any
map from Z to [0, 1]. Our task is to show that f cannot be onto. Then we will have proved
[0, 1] (and hence R) is uncountable. Consider the value f(1). This is a real number, so we
can express it in decimal notation and write

f(1) = .x
(1)
1 x

(1)
2 x

(1)
3 · · · ;

here each x
(i)
j is just a number between 0 and 9. Let’s list the other values of f in this way

f(1) = .x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 · · ·

f(2) = .x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 · · ·

f(3) = .x
(3)
1 x

(3)
2 x

(3)
3 x

(3)
4 x

(3)
5 · · ·

f(4) = .x
(4)
1 x

(4)
2 x

(4)
3 x

(4)
4 x

(4)
5 · · ·

f(5) = .x
(5)
1 x

(5)
2 x

(5)
3 x

(5)
4 x

(5)
5 · · ·

...

Now choose numbers yj from 0 to 9 so that each yj differs from the diagonal element x
(j)
J ,

yj 6= x
(j)
j for all j.

Consider
y = .y1y2y3y4y5 · · · .

Clearly y ∈ [0, 1]. But by construction there is no integer k such that f(k) = y. So f cannot
be onto. So [0, 1] is uncosuntable! Thus the interval [0, 1] does not have the same size as Z!
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Here are some problems to test your understanding of countability.

Exercises

1. Is the set of pairs of integers countable?

2. Is the set of rational numbers Q (i.e. fractions) countable?

3. Is the set of irrational numbers countable?

4. Is the set of real numbers x such that 0 ≤ x ≤ 1 countable?

Aside. One of the great problems of the last hundred years is called the continuum hypoth-
esis. It can be stated as follows.

Conjecture. Any set of real numbers is either countable or can be put in one-to-one corre-

spondence with the entire set of real numbers.

Here are two harder examples that we will discuss in the course of today’s Circle.

Question. Does the interval (−1, 1) have the same size as the entire real line?

Question. Does the set of point lying in a square of edge-length one have the same size as
the interval [0, 1]?

As a final example, we consider the Cantor set. We start with the interval of real numbers
from 0 to 1 and remove the middle interval from 1/3 to 2/3,

S1 =

Then perform the same procedure to each of the remaining intervals to arrive

S2 =

Continue in this way,

S3 =

S4 =
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S5 =

Finally define

S =
⋂

i

Si.

This is called the Cantor set. It looks like a little dust on the real line, and doesn’t look
very infinite at all. Formally we can ask:

Question. Is S countable?


