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Suppose you are given the equations x + y + z = a and 1
x

+ 1
y

+ 1
z

= 1
a
, and

are asked to prove that one of x,y, and z is equal to a. We are used to solving
problems of this type by finding out where the graphs of those equations intersect–
i.e. by solving for one variable in terms of the others and checking a bunch of cases.

To illustrate, try solving the above problem algebraically for a = 2. That is,
if x + y + z = 2 and 1

x
+ 1

y
+ 1

z
= 1

2
, show x or y or z must equal 2.
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I claim that one of x, y, and z must be equal to a because a is a root of the
polynomial p(t) = t3 − at2 + bt − ab for any b. This solution is much faster, but
it is not at all obvious why this observation leads to our desired conclusion. The
idea is to find b such that x, y, and z are all the roots of p(t). Then, since a is
also a root, a must coincide with one of x, y, and z. But how do we find such a
b? To investigate, we will explore the general relationship between the roots of a
polynomial and its coefficients.

Definition: A polynomial in n variables is homogeneous of degree k if all the mono-
mials have degrees which sum to k.

Examples:

1. p(x) = x is a homogeneous polynomial of degree 1 in one variable.

2. q(x, y, z) = x4 + y2z2 is a homogeneous polynomial of degree 4 in three
variables.

3. r(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 is a homogeneous
polynomial of degree 2 in four variables.

We notice something special about the polynomial r(x1, x2, x3, x4). If we swap x

and z in q(x, y, z), we find q(z, y, x) = z4 + y2x2 is not the same polynomial as
q(x, y, z), but no matter how we reorder the xi, r remains the same.

Definition: A permutation is a function σ which reorders a list of objects.

For example, let σ be the permutation on the numbers {1, 2, 3, 4} such that
σ(1) = 1, σ(2) = 4, σ(3) = 2, σ(4) = 3. We see that σ reorders the list {1, 2, 3, 4}
as {1, 4, 2, 3}. With this new notation, our observation about r above can be
re-stated as follows: For any permutation σ of {1, 2, 3, 4}, we have

r(xσ(1), xσ(2), xσ(3), xσ(4)) = r(x1, x2, x3, x4).

We give the following name to polynomials with this property:

Definition: A polynomial p in n variables, x1, x2, . . . , xn is symmetric if for any
permutation σ on {1, 2, . . . , n},

p(xσ(1), xσ(2), . . . , xσ(n)) = p(x1, x2, . . . , xn).
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Exercise: Is p(x, y, z) = x + y + z symmetric? Is p(x, y, z) = x + y?

There is a special collection of symmetric polynomials, called elementary symmetric

polynomials. The kth elementary symmetric polynomial in n variables, denoted
sk(x1, . . . , xn), is the sum of all possible degree k monomials in n variables with
each xi appearing no more than once in each monomial. Formally, for k ≤ n, we
will write

sk(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

xi1xi2 . . . xik

Example: p(x, y) = xy2 + yx2 is symmetric and homogeneous, but not an elemen-
tary symmetric polynomial. The polynomial r(x1, x2, x3, x4) above is an elemen-
tary symmetric polynomial.
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Exercises:

1. How many monomials are there in the elementary symmetric polynomial of
degree k in n variables?

2. List all the monomials of degree 3 in 4 variables.

3. Write down the elementary symmetric polynomials of all degrees in 3 vari-
ables.
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You may have learned in algebra while learning how to factor polynomials that
any integer root of a polynomial with integer coefficients will divide the degree
zero term. Here is an explaination of why this should be so: Suppose a and b are
roots of x2 − cx+d. Since we know the roots, we know how factor this polynomial
as (x − a)(x − b). When we multiply out the factors, we see

x2 − (a + b)x + ab = x2 − cx + d;

consequently, a + b = c and ab = d, so a and b must divide d.

Observe further that a + b = s1(a, b) and ab = s2(a, b), so we can rewrite the
polynomial

x2 − cx + d = x2 − (a + b)x + ab = x2 − s1(a, b)x + s2(a, b).

It happens to be true in general, that if a1, a2, . . . , an are the roots of a degree n

polynomial p(x), of the form p(x) = xn + αn−1x
n−1 + . . . + α0, then

p(x) =

n∏

i=1

(x − ai) = xn +

n∑

i=1

(−1)isi(a1, . . . , an)xn−i. (1)

This implies that the coefficients αi = (−1)isi(a1, . . . , an). In other words, the
coefficients of a polynomial can be written explicitly in terms of the roots of that
polynomial using the elementary symmetric polynomials.

Example:

(x − a)(x − b)(x − c) = x3 − (a + b + c)x2 + (ab + bc + ac)x − abc
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Exercises: Compute the following polynomials in two ways– multiplying everything
out manually first, then computing the coefficients via the elementary symmetric
polynomials to verify they yield the same answer.

1. (x − 1)(x − 2)(x − 3)

2. (x − 1)(x + 2)(x − 3)
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3. (x − 2)3(x − 3)2

4. (x −
√

2 −
√

3)(x −
√

2 +
√

3)(x +
√

2 −
√

3)(x +
√

2 +
√

3)
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With a little practice, you will find you can expand factored polynomials very

quickly with this trick. Amaze your friends and family!

We are ready to return to our original problem. Let b = xy + xz + yz and
p(t) = (t − x)(t − y)(t− z). Then,

1

a
=

1

x
+

1

y
+

1

z
=

yz + xz + xy

xyz
=

b

xyz

which implies xyz = ab. Therefore,

p(t) = t3 − (x + y + z)t2 + (xy + xz + yz)t − (xyz) = t3 − at2 + bt − ab.

On the other hand, recall p(a) = a3 − a(a2) + b(a) − ab = 0, so a is a root of p.
Therefore, a must equal x, y, or z.
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Exercises: Solve the following problems using elementary symmetric polynomials.

1. Find a, b, c such that the roots of f(x) = x3 + ax2 + bx + c are a, b, c.
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2. Let a1, a2, a3 be roots of 6x3 − 2x2 + 3x + 5. Find a polynomial with roots
1
a1

, 1
a2

, 1
a3

.
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3. Let a1, a2, a3 be roots of 2x3−7x+8. Find a polynomial with roots 1
a1a2

, 1
a2a3

, 1
a1a3

.
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4. Let a1, a2, a3 be the three roots of x3 + 3x + 1.

(a) Find a polynomial with roots a2
1, a

2
2, a

2
3.

(b) Find a polynomial with roots a1 + a2, a1 + a3, a2 + a3.
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5. The Wicked Witch said that the following polynomial has 2005 integer roots:
x2005 + 2x2004 + 3x2003 + . . .. Prove she is a liar. Hint: You will need the
following relation:

x2
1 + x2

2 + . . . + x2
n = s1(x1, . . . , xn)2 − 2s2(x1, . . . , xn)
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For the interested reader, here is the proof of equation 1. The proof is by induction
on the degree of the polynomial. If our polynomial is of degree n = 1 with root
a, the left hand side is x − a, and the right hand side is x − s1(a) = x − a, so the
equation holds for n = 1. Suppose the equation holds for all polynomials of degree
n. Let p(x) be of degree n + 1 with roots a1, . . . , an+1. Then, we can write

p(x) = (x − an+1)
n∏

i=1

(x − ai) = (x − an+1)(x
n +

n∑

i=1

(−1)isix
n−i),

where we let si denote si(a1, . . . , an) for brevity. By multiplying out the right hand
side:

p(x) = xn+1 − (s1 + an+1)x
n +

n−1∑

i=1

(−1)i+1(si+1 + an+1si)x
n−i + (−1)n+1an+1sn

Since
s1 + an+1 = (a1 + . . . + an) + an+1 = s1(a1, . . . , an+1)

and
snan+1 = (a1a2 . . . an)an+1 = sn+1(a1, . . . , an, an+1),

if we can show si+1 + sian+1 = si+1(a1, . . . , an+1) for all the other i, we conclude
the equation holds for n + 1, hence for all n. By definition,

si+1(a1, . . . , an+1) =
∑

1≤j1<...<ji+1≤n+1

aj1aj2 . . . aji+1

By separating the sum with respect to monomials divisible by an+1, we see the
above is equal to

∑

1≤j1<...<ji+1≤n

aj1aj2 . . . aji+1
+ an+1

∑

1≤j1<...<ji≤n

aj1aj2 . . . aji
= si+1 + an+1si

so it is clear the relationship we wanted holds.
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