
Math Circle for November 6, 2002

Nancy Sundell-Turner & Fred Adler

Extinction & Population Dynamics (Part 2)

Challenge Problem (from Part 1)
Determine the long term dynamics of a population that behaves according
to the equation:

Nt+1 =
rNt

1 + 4N2
t

A. Use the cobwebbing technique with the following values of r and N0:
r = 2, 4, 5 and N0 = .1, .9

B. Use your calculator to produce a short sequence of numbers using the
initial population sizes given above.

When r = 2, N∗ = 0 and N∗ = .5

N0 = .1 → .19 → .34 → .46 → .50

N0 = .9 → .42 → .49 → .50

When r = 4, N∗ = 0 and N∗ =
√

3
2
≈ .87

N0 = .1 → .38 → .97 → .82 → .89 → .85 → .87

N0 = .9 → .85 → .87

When r = 5, N∗ = 0 and N∗ = 1

N0 = .1 → .48 → 1.25 → .86 → 1.08 → .95 → 1.03 → .98 → 1.01 → .99 → 1.00

N0 = .9 → 1.06 → .96 → 1.02 → .99 → 1.01 → 1.00

C. Algebraically solve for the equilibrium points for general values of r. How
many equilibrium points are there?
Equilibrium points are N∗ = 0 and N∗ =

√
r−1
2

. The second equilibrium only
exists if r > 1.
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D. Do you see new patterns appearing in the cobwebbing picture and numer-
ical sequence that did not occur in Ponds 1 and 2? What are some possible
biological explanations for the patterns you see?

In the previous examples (Ponds 1 and 2), the population approached
the equilibrium points from one direction, i.e. if the initial population was
less (greater) than the equilibrium level, all the intermediate steps were less
(greater) than the equilibrium level. In this example, we see that the pop-
ulation levels sometimes cycle around the equilibrium level as it approaches
equilibrium. When this phenomena occurs in biological systems it can be
due to effects such as overcompensation or cannibalism.

LOGISTIC MAP
Cycling behavior is not unique to the model examined in the Challenge Prob-
lem. Lets consider the following model for population growth (the logistic
map).

Nt+1 = rNt(1−Nt) = rNt − rN2
t

This function is an upside down parabola with height r
4

when Nt = 1
2
. Again,

we are assuming that Nt is the fraction of the pond (or other habitat) that
is full, so 0 ≤ Nt ≤ 1. To satisfy this, we use 0 ≤ r ≤ 4.

Exercise 1a: Algebraically find the equilibrium points.
Solve

N = rN(1−N)

rN2 + (1− r)N = 0

N(rN + 1− r) = 0

N∗ = 0 and N∗ =
r − 1

r
= 1− 1

r

Exercise 1b: Using cobwebbing, predict how full the pond will be after ten
years if:

r = 2.8, 3.3, 3.83, 4 and N0 = 1
2

For the case r = 4 also determine what happens when N0 is close to 1
2
, but

not equal to 1
2
.
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Hint: If you are having trouble figuring out the dynamics from the cobweb-
bing, try calculating a sequence of numbers with your calculator. Start at 1

2

and look for a pattern.

For r = 2.8 we see the population level cycling into the positive equilibrium
point (damped oscillations).

Sample sequence: .5 → .7 → .59 → .68 → .61 → .67 → .62 → .66 → .63

For r = 3.3, the population oscillates between two different levels (period 2).
Sample sequence: .5 → .83 → .48 → .82 → .48 → .82 → .48

For r = 3.83, the population oscillates between three different levels (period
3).

Sample sequence: .5 → .96 → .16 → .5 → .96 → .16 → .5

For r = 4, if N0 = 1
2
, the population goes extinct. If N0 is just less than 1

2
we

find non-zero population levels after each step, but there doesn’t seem to be
a pattern (chaotic). One property to notice here is that even when we start
with very similar population levels (.5 and .48 or .49), the dynamics over
time are very different. This is an important property of chaotic systems.

Sample sequence: .48 → .998 → .006 → .025 → .099 → .36 → .92 →
.30 → .84 → .53 → .995 → .017 → .066 → .25 → .75 → .76 → .73 → .79 →
.67 → .88 → .42 → .97 → .11

Exercise 1c: What could be going on biologically in each of these cases?

**Exercise 1d: Theoretically, how could you determine if 2, 3, 4, 8, 16, .
. . cycles exist? If they do exist, how can you find the values they cycle
between? Is there any overlap between solving for 2-cycles and 4-cycles, or
other pairs of n-cycles?

For n-cycles, solve the equation Nt+n = Nt.

**Exercise 1e: Using algebra, determine for which values of r the 2-cycle
exists. Determine the values that the population cycles between for general
r that also satisfy the 2-cycle criteria.

Solve the equation Nt+2 = Nt.

Nt+2 = rNt+1(1−Nt+1)
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Nt+2 = r {rNt(1−Nt)} (1− {rNt(1−Nt)})
N = r2N(1−N)(1− rN + rN2)

N = r2N − r2N2 − r3N2 + r3N3 + r3N3 − r3N4

r3N4 − 2r3N3 + (r3 + r2)N2 + (1− r2)N = 0

We know that the fixed points must satisfy this equation as well since Nt+1 =
Nt implies that Nt+2 = Nt. Therefore, we can divide the polynomial by N
and (N − 1 + 1

r
) to get a quadratic equation.

N (N − 1 +
1

r
) r {r2N2 − (r2 + r)N + (r + 1)} = 0

Solving the quadratic, we find that the additional two roots are:

N∗ =
r + 1±

√
(r − 3)(r + 1)

2r

These roots only exist when r > 3, so 2-cycles can only occur when r > 3.
When they do occur, the population cycles between the two solutions of the
quadratic.

TENT MAP
In mathematical biology, when we want to study the behavior of a com-
plicated system, it often helps to examine a simpler approximation to that
system. We can approximate the parabolic shape of the logistic using two
straight lines (called the Tent Map).

Nt+1 = rNt if Nt ≤ 1

2

= r(1−Nt) if
1

2
≤ Nt

The maximum value of this function is r
2

and occurs when Nt = 1
2
. To ensure

that 0 ≤ Nt ≤ 1 we require 0 ≤ r ≤ 2.

We first notice that if r < 1, the slope of the left side of the tent is less than
one, so the tent is always underneath the line Nt+1 = Nt. Therefore, the only
equilibrium point is at Nt = 0.
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Consider the case when r = 1. Here we notice that the left side of the tent
sits directly on the line Nt+1 = Nt. Therefore, we have equilibria for all Nt

satisfying 0 ≤ Nt ≤ 1
2
. Thus, there are an infinite number of equilibrium

points.

Now consider the case when 1 < r ≤ 2. Here the slope of the left side of
the tent will always be greater than one, so the left side is above the line
Nt+1 = Nt. From a picture, we see that there is one non-zero equilibrium
point. We can solve for this equilibrium point algebraically:

N = r(1−N)

N∗ =
r

1 + r

Now consider the special case when r = 2. Notice that the peak of the tent
for r = 2 has a height of 1, the same as the logistic map when r = 4. In fact,
the behavior of the tent map with r = 2 is very similar to that of the logistic
map with r = 4. We have already found the equilibrium points for general
r > 1. Using this equation, we find N∗ = 0 and N∗ = 2

3
for the case r = 2.

Let’s look at a few iterations of the tent map with r = 2.

N0 = 0.359375

N1 = 2(0.359375) = 0.71875

N2 = 2(1− 0.71875) = 2(0.28125) = 0.5625

N3 = 2(1− 0.5625) = 2(0.4375) = 0.875

Our initial motivation for examining the tent map was to make things easier,
but it looks like these calculations could become tedious. So, we’d like to
figure out an easier way to iterate the tent map function.

BINARY DECIMALS
We first remember that:
∞∑
i=1

1

2i
=

1

21
+

1

22
+

1

23
+

1

24
+

1

25
+ ... =

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ ... = 1

Also, any number between zero and one can be expressed as a sum of the
form:
∞∑
i=1

ai
1

2i
= a1

1

21
+ a2

1

22
+ a3

1

23
+ a4

1

24
+ ... = a1

1

2
+ a2

1

4
+ a3

1

8
+ a4

1

16
+ ...
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where ai equals 0 or 1. A decimal’s binary representation is just a list of the
coefficients ai. We use the form:

0.a1a2a3a4... ⇒ a1
1

21
+ a2

1

22
+ a3

1

23
+ a4

1

24
+ ...

Let’s go back to our initial example. We started with

N0 = 0.359375 =
23

64
=

1

4
+

1

16
+

1

32
+

1

64
⇒ 0.0101110

N1 = 0.71875 =
23

32
=

1

2
+

1

8
+

1

16
+

1

32
⇒ 0.101110

N2 = 0.5625 =
9

16
=

1

2
+

1

16
⇒ 0.10010 = 0.10001111111111...

N3 = 0.875 =
7

8
=

1

2
+

1

4
+

1

8
⇒ 0.1110

Notice that some numbers will have two possible binary decimal representa-
tions. For example 1

2
⇒ 0.1 = 0.0111111111....

Exercise 2a: Use cobwebbing to determine the long term dynamics of the
tent map with r = 2 for: N0 = 3

30
, 4

30
, 5

30
, 6

27
, and 34

75
. Try your own values

for N0.

Starting at N0 = 5
30

we go to the equilibrium point. Starting at N0 = 3
30

we
go to a 2-cycle. Starting at N0 = 6

27
we go to a 3-cycle. Starting at N0 = 4

30

we go to a 4-cycle. Starting at N0 = 34
75

we go to a 20-cycle.

Exercise 2b: Determine an algorithm for the tent map (with r = 2) using
binary decimals. Look at a general number of the form:

0.a1a2a3a4... ⇒ a1
1

2
+ a2

1

22
+ a3

1

23
+ a4

1

24
+ ...

and remember that:

∞∑
i=1

1

2i
= 1

Try multiplying by 2 and subtracting from 1. Do you see a pattern?
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Multiplication by 2: Take any binary decimal representation and multiply
it by 2:

2
∞∑
i=1

ai
1

2i
=

∞∑
i=1

ai
1

2i−1

2 ∗ 0.a1a2a3a4... ⇒ a1.a2a3a4...

Multiplying a binary decimal by two involves shifting everything over to the
left one decimal place, or equivalently, moving the decimal point one place
to the right.

Subtraction from 1: Take any binary decimal representation and subtract
it from 1:

1−
∞∑
i=1

ai
1

2i
=

∞∑
i=1

a′i
1

2i

where the prime indicates changing a 1 to a 0 and vice-versa.

General Rule:

0.0a2a3a4a5... ⇒ 0.a2a3a4a5...

0.1a2a3a4a5... ⇒ 0.0a′2a
′
3a
′
4a
′
5... ⇒ 0.a′2a

′
3a
′
4a
′
5...

In words, if the number is less than one half, shift everything one digit to the
left. If the number is greater than or equal to one half, flip the digits (1 → 0
and 0 → 1) and then shift everything one digit to the left.

Exercise 2c: Use the algorithm you developed in exercise 2b to find 2, 3,
and 4 cycles when r = 2. Look for patterns in the binary representations of
the numbers. For example, the equilibrium point:

2

3
=

1

21
+

1

23
+

1

25
+

1

27
+ ... =

1

2
+

1

8
+

1

32
+

1

128
+ ... = 0.1010101010101010...

Exercise 2d: Use algebra to find 2, 3 and 4 cycles when r = 2. To set up
the equations you need to specify the pattern that you are looking for. If
small numbers are less than one half and big are greater than or equal to one
half, look for cycles with small, small, big, big, or small, big, small, big, or
small, small, small, big.
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**Exercise 2e: Use algebra to find 2, 3 and 4 cycles for general values of r.
Look for a 2-cycle with the pattern small, big:

N1 = rN0

N2 = r(1− rN0)

N = r − r2N

N∗ =
r

1 + r2

So, for r = 2 we should have a 2-cycle starting at N0 = 2/5 ⇒ 0.11001100110011001100......

Now, look for a 3-cycle with the pattern small, small, big:

N1 = rN0

N2 = r2N0

N3 = r(1− r2N0)

N = r − r3N

N∗ =
r

1 + r3

So, for r = 2 we should have a 3-cycle starting at N0 = 2/9 ⇒ 0.00111000111000111000111......

Now, look for a 4-cycle with the pattern small, small, big, big:

N1 = rN0

N2 = r2N0

N3 = r(1− r2N0) = r − r3N0

N4 = r(1− r + r3N0)

N = r − r2 + r4N

N∗ =
r − r2

1− r4

N∗ =
r

(1 + r)(1 + r2)

So, for r = 2 we should have a 4-cycle starting at N0 = 2/15⇒ 0.0010001000100010001.....

CHALLENGE PROBLEM
Find all the 5-cycles in the tent map with r = 2, either algebraically, or using
patterns of binary decimals.
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