Calculus|
Practice Problems 10: Answers
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Answer. Since x3 is an odd function and the domain is symmetric about 0, the first term contributes nothing.
Thus the integral is equal to
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3. Calculate the definite integrals:
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Answer. Since this is an even function and the domain is symmetric about 0, the integral is
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Answer. Let u= cosx, du= —sinxdx. When x = 0,u = 1 and when x = 11/4, u= v/2/2. Thus
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Answer. Letu=yY2 du=(1/2)y */?dy. Wheny =1, u=1and wheny=4, u=2. Thus
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5. Evaluate
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Answer. Let u= 3x+ 1. By the fundamental theorem of the calculus d/du f5 costdt = cosu. Now, by the
chain rule
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Answer. Let u= x2. By the fundamental theorem of the calculus d/du f5't3dt = u3. Now, by the chain rule

dix/ox t3dt = (%/Outgdt)(ﬁ) — u3(2x) — (X2)3(2X) — o7 .

6. Find the area of the region in the right half plane (x > 0) bounded by the curves y = x—x3 and y = x? — x.

Answer . First, we find the points of intersection of the curves by solving the equation x — x3 = x?> — x. This
becomes x3 + x? — 2x = 0, which has the solutions x = —2,0,1. Since we are interested only in x > 0, the
range of integration is the interval (0,1). From the graph (see the figure), the cubic curve lies above the
quadratic, so the area is
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7. Find the area of the region in the first quadrant bounded by the curves y = sin Ixand y = x.

Answer. The curves intersect at x =0, 1, and the sine curve is above the line (see the figure), so the area is
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8. Find the area of the region under the curve y = xv/x2 + 1, above the x-axis and bounded by the lines x = 1
and x= 3.

Answer. The area (see the figure) is given by ffxx/x2 +1dx. Letu=x?+1, du=2xdx. Whenx=1, u=2
and when x = 3, u= 10. This substitution leads to:
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9. Find the area under the curve y = x? + x~2, above the x-axis and between the lines x = 1 and x = 2.

Answer. The area is



10. What is the area of the region bounded by the curves y = x3 — x and y = 3x?

Answer . First find the points of intersection:
XC—x=3x or X>=4x

has the solutions x = —2,0, 2. The line y = 3x lies below the curve y = x3 — x in the interval (-2,0) and above
that curve in the interval (0,2) (see the accompanying figure). The areas of these two regions are given by the
integrals:
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Since the two intervals are symmetric about 0, and the integrand is an odd function, these two integrals are
the same. Thus the area is
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