
Calculus I
Problem Set 11 Answers

1. A solid is formed over the region in the first quadrant bounded by the curvey = p
10�x so that the section

by any plane perpendicular to thex-axis is a semicircle. What is the volume of this solid?

Answer. We sweep out along thex-=axis. The section atx is a semicircle of radiusy=2, so has areaA(x) =(π=2)(y=2)2 = (π=8)(10� x). Thus

V = π
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2. A solid is formed over the region in the first quadrant bounded by the curvey = p
4�x so that the section

by any plane perpendicular to thex-axis is a square. What is the volume of this solid?

Answer. The section atx has areay2 = 4� x, so

V = Z 4

0
(4� x)dx = 8 :
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3. A solid is formed over the region in the first quadrant bounded by the curvey = 2x�x 2 so that the section
by any plane perpendicular to thex-axis is a semicircle. What is the volume of this solid?



Answer. As in problem 1,

dV = π
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IntegratingdV from 0 to 2, we get

V = π
8
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4. The region in the first quadrant bounded byy = p
x2�1; y = 0; x = 1; x = 4 is revolved around thex-axis.

Find the volume of the resulting solid.

Answer. Here we find that at a typicalx between 1 and 4,dV = πr 2dx = π(x2�1)dx. Integrating, we get
V = 18π.
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5. Find the volume of the solid obtained by rotating about they-axis the region bounded byy = x 2; x = 2 and
thex-axis.



Answer. Here we will use the washer method, sweeping out along they-axis, withy ranging from 0 to 4. At
a typicaly, dV = (πR2�πr2)dy, andR = 2; r =p

y. Thus the volume is

V = π
Z 4

0
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6. The region in the first quadrant under the curvey = 2x�x 2 is rotated about they-axis. Find the volume of
the resulting solid.

Answer. Here we sweep out along thex-axis fromx = 0 to x = 2, using the shell method. At a typicalx,
dV = 2πxydx = 2π(2x2� x3)dx, and

V = 2π
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7. The region in the first quadrant bounded byy= x 4 andx= 1 is revolved around they-axis. Find the volume
of the resulting solid.

Answer. Here let’s use the shell method, sweeping out along thex-axis (compare this with problem 5).
dV = 2πxydx = 2πx5dx. Integrating from 0 to 1, we getV = π=53.
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8. The region in the first quadrant bounded byy = x� x 2 andy = x� x3 is revolved around thex-axis. Find
the volume of the resulting solid.

Answer. Using the washer method, at a typicalx between 0 and 1,dV = (πR 2�πr2)dx = π [(x�x3)2� (x�
x2)2]dx. After some algebra, we obtain
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9. Theaverage value of a functiony = f (x) defined over an interval[a;b] is defined to be

yave= 1
b�a

Z b

a
f (x)dx :



Find the average ofy = sinx over the interval[0;π ].
yave= 1

π
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π
:

10. Letg(x) = x2+ x3 for x in the interval 0� x� 10. Find the average, or mean, value ofg on the interval.
Find the average slope of the graph ofy = g(x) on the interval.

Answer. The average value of the function is
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Since the slope isy0 = g0(x)m the average slope is
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(g(10)�g(0)) = 110:


