Calculus I Practice Problems 3

1. A point moves around the unit circle so that the angle it makes with the *x*-axis at time *t* is $\theta(t) = (t^2 + t)\pi$. Let (x(t), y(t)) be the cartesian coordinates of the point at time *t*. What is dy/dt when t = 3?

2. Find the derivative: $f(x) = \sin x \cos x$

3. Find the derivative: $g(x) = \frac{\sin x}{\cos x}$

4. Let $f(x) = x \sin x$. Find the equation of the tangent line to the graph y = f(x) at the points $x = (n + 1/2)\pi$ for any integer *n*.

- 5. Consider the curves $C_1 : y = \sin x$ and $C_2 : y = \cos x$.
 - a) At which points x between $-\pi/2$ and $\pi/2$ do the curves have parallel tangent lines? b) At which such points do they have perpendicular tangent lines?
- 6. Differentiate: $f(x) = \frac{1 + \tan x}{1 \tan x}$
- 7. Let $y = x + 25x^{-1}$. Find an approximate value of y when x = 3.2.
- 8. Find an approximate value of $tan(.26\pi)$.
- 9. Find the equation of the tangent line to $y = x^2(x^3 1)$ at (2,28).
- 10. Find the equation of the tangent line to the curve $y = x \cos x$ at $(\pi/4, \pi\sqrt{2}/8)$.