
CHAPTER 5

Applications of Integration

�
5.1. Volume

In the preceding section we saw how to calculate areas of planar regions by integration. The relevant
property of area is that it is accumulative: we can calculate the area of a region by dividing it into
pieces, the area of each of which can be well approximated, and then adding up the areas of the pieces.
To put it another way, we calculate area by adding piece by piece as we move through the region in a
particular direction. Once we have obtained a formula for the differential increment in the area (such
as dA � L � x � dx), we find the area by integration. This process can be used to calculate values of any
accumulative concept, such as volume, arc length and work. This chapter is devoted to these calculations.

Example 5.1 To begin with, let us calculate the volume of a sphere of radius R. We first have to decide
on a direction of accumulation; and for that we need a particular coordinate representation of the sphere.
Start with the region in the plane bounded by the x-axis and the curve C : x2 � y2 � R2. If we rotate this
region in space about the x-axis, we obtain the sphere of radius (R) (see figure 5.1). We now accumulate
the volume of the sphere by moving along the axis of rotation, (the x-axis), starting at x ��� R, and ending
at x � R. Let V � x � be the volume accumulated when we reach the point x. Then the piece added when
we move a distance dx further along the axis is a cylinder of width dx and of radius y, the length of the
line from the x-axis to the curve C (see figure 5.1). The volume of this piece is thus

(5.1) dV � πy2dx �
Now, along C, y ��� R2 � x2, from which we obtain dV � π � R2 � x2 � dx. The volume thus is the integral
of this differential:

(5.2) V ��	 dV ��	 R
 R
π � R2 � x2 � dx � π � R2x � x3

3 ��




R
 R

(5.3) � π � R2 � R ��� R3

3
��� R2 ��� R ��� ��� R � 3

3 ��� � 4
3

πR3 �
56
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We can find the volume of a spherical segment of depth h the same way (see figure 5.2):

(5.4) V � 	 R

R 
 h
π � R2 � x2 � dx � 2π

3
h � R2 � h2 ���

after an even longer computation.

In general, we can calculate the volume of a solid by integration if we can see a way of sweeping
out the solid by a family of surfaces, and we can calculate, or already know the area of those surfaces.
Then we calculate the volume by integrating the area along the direction of sweep. In the above example
we swept out the sphere by moving along the x-axis, and associating to each point x the area of the disc
which is the perpendicular cross-section of the sphere at x.

�
5.1.1 Volume: general method

The way to find the volume of a solid is this. Sketch the region under consideration. Choose a direction
in which to accumulate the volume. Write down the expression for the differential increment in volume:

(5.5) dV � A � x � dx �

where dx is an infinitesimal increment in the direction of accumulation, and A � x � is the area of the section
of the solid at the point x. Of course, if the solid is highly irregular, finding A � x � may still be a problem.
In this section we restrict attention to those cases where A � x � is known or is easily found.

Example 5.2 Find the volume of a cone of base radius r and height h.
We sweep out the cone along its axis starting at the vertex (see figure 5.3), so x ranges from 0 to h.

The cross-section of the cone at any x is a disc, let ρ be its radius. Then dV � πρ 2dx. Now, we can find
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ρ as a function of x by similar triangles:

(5.6)
ρ
r
� x

h
�

so ρ � rx � h. Then

(5.7) Volume � 	 h

0
π

r2x2

h2 dx � π
r2

h2

x3

3 




h

0
� 1

3
πr2h �

Example 5.3 Find the volume of a pyramid of height h and square base of side length s.
Here again, we sweep the pyramid out along its axis, with x representing the distance from the vertex

(see figure 5.4). Then x ranges from 0 to h, and at any x, the cross-section is a square of side length σ .
The differential increment of volume at x is dV � σ 2dx. Again by similar triangles σ � sx � h. Thus

(5.8) Volume ��	 h

0

s2

h2 x2dx � s2

h2

x3

3 




h

0
� 1

3
s2h �

Example 5.4 Let R be the region in the plane bounded by the curves y � x2, y � � x2. Let K be a
solid lying over this region whose cross-section is a semicircle of diameter the line segment between the
curves (see figure 5.5). Find the volume of the piece of K lying between x � 1 and x � 2.

We sweep out along the x-axis. Then dV � � 1 � 2 � πr2dx, where r is the radius of the semicircle. Now
r � x2, so we obtain

(5.9) V � 	 2

1

1
2

π � x2 � 2dx � 1
2

π
x5

5 




2

1
� 1

10
π � 32 � 1 � � 3 � 1π �
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5.1.2 Volumes of Revolution

A solid of revolution is obtained by revolving a region in the plane around an axis in the plane. There
are three ways of calculating the volume of such a solid, depending upon how we sweep it out.
Disc method. Suppose, as in figure 5.6, the figure lies between a curve C : y � f � x � and the x-axis, which
is the axis of rotation. Then a cross section is a disc of radius y, so

(5.10) dV � πy2dx � π � f � x ��� 2dx �
Washer method. Suppose the figure lies between two curves C1 : y � f � x � lying above C2 : y � g � x � in
the upper half-plane and the axis is the x-axis (see figure 5.7). Then a cross section is a washer: the region
between two concentric circles. Its area is the difference of the areas of these circles. The differential
increment of volume is then

(5.11) dV � � π f � x � 2 � πg � x � 2 � dx �
Figure 5.7
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Shell method. This method is used when it is convenient to sweep out the volume along an axis perpen-
dicular to the axis of rotation. To be more specific, suppose the region lies in the right half plane, and
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we rotate it about the y-axis. Then for each x, the incremental surface at x is the cylinder swept out by
rotating the line segment perpendicular to the x-axis lying in the region (see figure 5.8) about the axis of
rotation. The area of this surface is 2πxL where L is the length of the line segment. Thus

(5.12) dV � 2πxLdx �
Example 5.5 Consider the region R between the lines L1 : y � x, L2 : y � 2x and x � 3 (see figure 5.9).
Suppose we generate a solid by rotating R about the x � axis. We sweep out the solid along the x-axis. At
any x the cross-section is the washer generated by the line segment between L1 and L2. This is bounded
by the circles of radius 2x, x respectively. Thus dV � π � � 2x � 2 � x2 � � dx � π � 3x2 � dx, and so

(5.13) V � π 	 3

0
� 3x2 � dx � πx3 




3

0
� 27π �

Example 5.6 Suppose instead we rotate the same region R about the y-axis. Then (sweeping along the
x-axis), the surface generated at any x is the cylinder of radius x and height the distance between the two
curves: 2x � x. Thus dV � 2πx � x � dx, and

(5.14) V � 2π 	 3

0
x2dx � 2

3
π � 33 � 03 � � 18π �

Example 5.7 We could also do example 5.6 by accumulating volume along the axis of rotation (the
y-axis), but this is more complicated. As we see from figure 5.10, y ranges from 0 to 6, and the curve
describing the outer boundary changes at the point y � 3. So we have to split this up into two computa-
tions. For the first, y ranges from 0 to 3, and the region is bounded by the curves x � y � 2 � x � y, and for
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the second, y ranges from 3 to 6 and the region is bounded by the curves x � y � 2 � x � 3. In both cases,
a slice at a fixed y is a washer, so

(5.15) dV � π � R2 � r2 � dy �

where R is the outer radius, and r is the inner radius. For the first computation then

(5.16) V1 � 	 3

0
π
�

y2 ��� y
2 � 2 �

dy � π
4
	 3

0
3y2dy � 27

4
π �

For the second:

(5.17) V2 � 	 6

3
π
�

32 � � y
2 � 2 �

dy � π 	 6

3

�
9 � y2

4

�
dy � π

�
9y � y3

12

� 




6

3
� 9π � 9

4
π �

The total volume is V1
� V2 � 18π .

Example 5.8 Rotate the triangle bounded by the coordinate axes and the line x � y � 1 about the line
x � 3, and find the volume (see figure 5.11).

Figure 5.11
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We’ll accumulate the volume in the direction of the axis of rotation, so the variable is y, ranging from
0 to 1. For a fixed y, the surface generated by the rotation is a washer of outer radius 3, and inner radius
3 � x � 3 � � 1 � y � � 2 � y. Thus dV � π � 32 � � 2 � y � 2 � � 5 � 4y � y2, and the volume is

(5.18) 	 1

0
� 5 � 4y � y2 � dy � � 5y � 2y2 � y3

3

� 




1

0
� 8
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�

�
5.2. Arc Length

We have seen that a curve in the plane can be described explicitly as the graph of a function y � f � x � or
implicitly, as a relation F � x � y � � C between the variable x and y. A third way a curve can be described
is parametrically in the form

(5.19) x � x � t � y � y � t �
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as the parameter t ranges over an interval � a � b � . For example, a particle may be moving on the plane,
and its position at time t is � x � t � � y � t ��� .
Example 5.9 The circle of radius R can be described parametrically by taking as the parameter the
angle the ray through the point makes with the x-axis, so that � Rcos t � Rsin t � are the coordinates of the
point for a given angle t (see figure 5.12).

Figure 5.12
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Since cos2 t � sin2 t � 1, these points all satisfy the implicit relation x2 � y2 � R2.

Suppose an object is moving in a plane perpendicular to the earth’s surface so that the only force acting on
it is gravity. Let its position at time t be � x � t � � y � t ��� . Then dx � dt is the horizontal velocity of the object,
and dy � dt the vertical velocity, in the sense that these are the rates of change of the motion in those
directions. We say that the pair � dx � dt � dy � dt � is the velocity of the object. Similarly, its acceleration
is the pair � d2x � dt2 � d2y � dt2 � , where d2x � dt2 is the horizontal acceleration and d2y � dt2 is the vertical
acceleration. In our case, since the only force is vertical, that of gravity, we have

(5.20)
d2x
dt2 � 0 and

d2y
dt2 � � 32 ft � sec2 �

We can integrate these equations to get the equations of motion of the object:

(5.21)
dx
dt
� vx

dy
dt
� � 32t � vy

where vx is the initial (and constant) horizontal velocity, and vy is the initial vertical velocity. The position
is then given by integrating again:

(5.22) x � t � � vxt � x � 0 � � y � t � � � 16t2 � vyt � y � 0 �
where at time t � 0 the particle is at � x � 0 � � y � 0 � �
Example 5.10 A rifle is fired from a prone position at an angle of 6 degrees from the horizontal. The
bullet leaves the muzzle with an initial velocity of 900 ft/sec. Assuming the ground is level, how far does
the bullet travel before it hits the ground again? How long does this take?

Let � x � t � � y � t ��� represent the position of the bullet at time t, assuming it starts at the origin, so x � 0 � � 0
and y � 0 � � 0. We are told that the tangent to the trajectory of the bullet at t � 0 makes an angle of 6



�
5.2 Arc Length 63

Figure 5.13
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degrees with the horizontal, and that it starts out in this direction at 900 ft/sec. In an increment of time dt
it travels a distance 900dt feet along this line, so the corresponding horizontal and vertical displacements
(see figure 5.13) are dx � 900cos6dt � 895dt and dy � 900sin6dt � 94dt. Thus vx � 895 ft/sec and
vy � 94 ft/sec. Thus, according to 5.5, the position of the bullet at time t is

(5.23) x � t � � 895t y � t � � � 16t2 � 94t �
Now, the bullet is at ground level when y � t � � 0. Solving that equation, t � 0 or t � 94 � 16 � 5 � 88 sec,
and x � 895 � 5 � 88 � � 5262 feet.

Example 5.11 Suppose a ball is hit horizontally at a height of 5 ft. at 120 mph (176 ft/sec). How far
from the hitter will it hit the ground?

Putting the origin of the coordinates at the batter’s feet, we have x � 0 � � 0 � y � 0 � � 5. Since the ball is
struck horizontally, we have vx � 120 � vy � 0. Thus, from (2), the equations of motion are

(5.24) x � t � � 120t y � t � � � 16t2 � 5 �
Ground level is at y � t � � 0, so we can solve the second equation for t : 0 � � 16t2 � 5, from which we
find t � �

5 � 16 � � 559. Thus the answer is x ��� 559 � � 120 ��� 559 � � 67 � 1 ft.

When a curve C is given parametrically as x � x � t � � y � y � t � , it may not be so easy to describe the curve.
To do that, one tries to write the curve as a relation between x and y by eliminating the variable t.

Example 5.12 Suppose C is given parametrically by

(5.25) x � t � � 15t � 10 y � t � � � 16t2 � 32t �
To eliminate t we solve the first equation for t in terms of x : t � � x � 10 � � 15, and then put that in the
equation for y:

(5.26) y � � 16

�
x � 10

15

� 2 � 32

�
x � 10

15

�
�

from which we see that y is a quadratic function of x along C, so the curve is a parabola.
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Example 5.13 Sometimes a little algebraic ingenuity is required. Given

(5.27) x � t � � t3 � t � 1 � y � t � � t2 �

we eliminate t in this way:

(5.28) x � t � t2 � 1 � � 1 � � y � y � 1 � � 1 or � x � 1 � 2 � y � y � 1 � 2 �
so the relation between x and y is quadratic in x and cubic in y.

Finally, let us see how to calculate the length of a curve. Suppose that C is a curve in the plane
running from point P to Q. First of all, observe that arc length is accumulative: if we break the curve
up into many pieces, the length of the curve is the sum of the lengths of the pieces. We thus anticipate
that arc length can be found by integration; in order to discover what to integrate, we seek a differential
relationship between arc length and the coordinates. For R any point on the curve, we consider the length
of the arc from P to R. It is customary to use the letter s as the function representing arc length along
the curve: thus s � R � is the length of the curve from P to R. If we now move along the curve C a small
distance ds from R, then the variables are displaced by small amounts dx and dy (see figure 5.14).

Figure 5.14
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Near R the curve is almost its tangent line, so we use the tangent line approximation to the length. By
the pythagorean theorem we have

(5.29) ds2 � dx2 � dy2

and thus the length of arc from P to Q is L � C � ��� Q
P ds ��� Q

P

�
dx2 � dy2 �

To do this integration, we use the equations describing a curve, explicit or parametric. We warn the
reader that usually this computation leads to an expression we do not yet know how to integrate; in this
case we shall leave it as a definite integral.

Example 5.14 What is the length of the line y � 3x � 2 between the points P � 1 � 5 � and Q � 3 � 11 � ?
Here we can express the form 5.29 in terms of x. We have dy � 3dx, so

(5.30) ds2 � dx2 � dy2 � dx2 � 32dx2 � 10dx2

so ds � � 10dx. Then

(5.31) L � 	 Q

P
ds � 	 3

1
� 10dx � � 10 � 3 � 1 � � 2 � 10
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which is, of course, the same answer we would have gotten from the distance formula of chapter I.

Example 5.15 Find the length of the arc of a circle of radius R subtended by an angle α .
Here we parametrize the circle as in example 5.9 (see figure 5.12): x � Rcos t � y � Rsin t. Then dx �� Rsin tdt � dy � Rcos tdt and 2ds2 � dx2 � dy2 � ��� Rsin t � 2t2 � � Rcost � 2dt2 � R2 � sin2 t � cos2 t � dt2 �

R2dt2 � Our length is thus

(5.32) L � 	 ds � 	 α

0
Rdt � Rα �

another standard formula.

Example 5.16 Find the length of the curve x2 � y3 from (0,0) to (27,9).
First we have to find a suitable parametrization of the curve. Since the variables are positive in this

range, we can write y � t2, and then x2 � y3 � � t2 � 3 � � t3 � 2, so we can take x � t3, as t ranges from 0 to
3. Now dy � 2tdt and dx � 3t2dt, so

(5.33) ds2 � dx2 � dy2 � 9t4dt2 � 4t2dt2 � t2 � 9t2 � 4 � dt2 ;

that is, ds � t � 9t2 � 4dt. Then the length is

(5.34) L � 	 ds � 	 3

0
t

�
9t2 � 4dt � � 1

18
	 85

4
u1 � 2du

using the substitution u � 9t2 � 4 � du � 18tdt. The limits of integration in u are found by evaluating u at
t � 0 and t � 3. The length is

(5.35) L � 1
18

2
3

u3 � 2 




85

4
� 1

27
� 853 � 2 � 8 � �

Example 5.17 Find the length of the parabolic segment y � 5x � x2 from x � 0 to x � 5.
We have dy � � 5 � 2x � dx, so ds2 � � 1 � � 5 � 2x � 2 � dx2, and the length is

(5.36) L ��	 5

0

�
1 � � 5 � 2x � 2dx � 1

2
	 5
 5

�
1 � u2du �

making the substitution u � 2x � 5 � du � 2dx. But that didn’t help; we still end up with an integral we
have yet to learn how to integrate.
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�
5.3. Work

Work is the product of force and distance. The unit of force in the British system is the foot-pound; in the
metric system it is the joule, or newton-meter. For example, to move a box a distance of 12 feet against
a force of friction of 40 lbs takes 40 � 12 = 480 foot-pounds. To lift a weight of 25 pounds a distance of
8 feet takes 25 � 8 = 200 foot-pounds. Remember that the weight (at the surface of the earth) of an object
is a measure of its gravitational force, and is equal to mg, where m is the mass of the object and g is the
acceleration of gravity. In the metric system, the gram and the kilogram are measures of mass, so to find
the weight (in joules) we must multiply the mass (in kilograms) by g = 9.8 m/sec2.

Example 5.18 How much work is done in lifting a mass of 1.2 kg a distance of 12 meters?
The weight of the mass is (1.2)(9.8) newtons, so the work is (1.2)(9.8)(12) = 141.12 joules.

Now, suppose that the force is not constant, but varies over the distance traversed. For example, when
we put a rocket in orbit, we must calculate the energy (work) required. Now the force on the rocket (its
effective weight) decreases as it leaves the surface of the earth. We shall take up this problem below.

So, suppose we have a force acting along a line; denote the value of the force at the point x as F � x � .
If F � x � is positive, it works in the direction of increasing x, and if negative, it works opposite to that
direction. That is, if the force is positive, it does work as we progress, and if negative, it causes work
as we progress. Work is accumulative: If we break the interval up into pieces, the total work done is
the sum of the work done over each piece. We set up a work calculation by integration, once we know
the differential relation. Let W � x � be the work done to get from a to x. If we move a small distance dx
further, we may assume the force to be constant, and equal to F � x � over this interval. Then the increment
in work is dW � F � x � dx. We now find the total work by integrating:

(5.37) W � 	 b

a
F � x � dx �

In particular, if this is positive, the force is doing work over the interval, and if negative, we must supply
the work to overcome it.

Definition 5.1 Let F � x � be a force acting along the real axis, such that F � x � � 0 when F is acting in the
direction of increasing x. Let a � b. The work done by the force over the interval � a � b � is W ��� b

a F � x � dx.

Example 5.19 Let F � x � � x � 1 � x2 � be a force acting on the x axis. How much work is done by the force
a) between the points 0 � 1? b) between the points 0 � 2?

(5.38) W � 	 1

0
� x � x3 � dx � x2

2
� x4

4 




1

0
� 1 � 2

(5.39) W � 	 2

0
� x � x3 � dx � x2

2
� x4

4 




2

0
� � 2

Thus the force does work for us between 0 and 1, but against us between 1 and 2.
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�
5.3.1 Springs

Consider a spring hanging vertically. If the spring is extended or compressed, a force will be exerted,
called the restoring force, directed toward the initial rest position. If a weight is carefully attached to the
spring, it will extend to a new rest position, at which the weight exactly balances the restoring force. This
is the equilibrium position for that weight. According to Hooke’s Law, the magnitude of the restoring
force and the displacement from rest are proportional. That is, if we let x represent the displacement
from the equilibrium position, and F � x � the force in the spring, then we have

(5.40) F � x � � � kx

for some constant k, called the spring constant. The negative sign indicates that the force acts in the
direction opposite to the displacement.

Example 5.20 Suppose a 5 lb weight extends a spring by 1.5 inches. a) What is the spring constant? b)
How far will a 12 lb. weight extend the spring?

The force in the spring at 1.5 inches, or .125 feet is -5 lbs, so by (5) � 5 � � k ��� 125 � , so k � 40 lb/ft,
and Hooke’s law for this spring is F � x � � � 40x. When the 12 lb weight is attached, the restoring force
is F � x � � � 12, so we find x by solving � 12 � � 40x, or x � � 3 ft or 3.6 inches.

Example 5.21 Suppose a 3 pound weight displaces a spring 2 inches. How much work is required to
displace the spring two feet?

First we use Hooke’s law with the given information to find the spring constant. In our situation,
when x � 1 � 6 foot, F � � 3 pounds. From Hooke’s law, � 3 � � k � 1 � 6 � , so the spring constant is k � 18,
and Hooke’s law for this spring is F � x � � � 18x. Now, for work, we have dW � F � x � dx, so to extend the
spring 2 feet, we calculate the work done by the spring over this distance:

(5.41) W ��	 2

0
� 18xdx � � 9x2 





2

0
� � 36

ft-lbs. Thus the work needed to extend the spring 2 feet must counterbalance this, so is 36 foot-pounds.

Now if a spring with an object at its end is extended a certain distance and then released, it will
vibrate. To understand this motion, we recall the discussion of Example 4.11. There we saw that for
a body in motion vdv � adx, where x is the displacement, v the velocity and a the acceleration. If we
multiply by the mass m and use Newton’s law, F � ma, we get

(5.42) mvdv � Fdx �
The expression on the right is dW , the differential of work, and the expression on the left is the differential
of � 1 � 2mv2, the kinetic energy: the change in kinetic energy is equal to the work done. This is then the
differential expression of the law of conservation of energy. Now, for a spring, F � x � ��� kx, so 5.42
becomes

(5.43) mvdv � kxdx � 0
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for a spring, which integrates to

(5.44) mv2 � kx2 � constant

during the motion of a vibrating spring of spring constant k and a mass m at its end.

Example 5.22 A spring of spring constant k � 4 ft/lb with an object of weight 3 lbs attached to its end
is at rest. The object is extended a distance of 2 feet and then released. At what velocity does the object
pass its equilibrium position?

The mass of the object is m � w � g � 3 � � 32 � � � 0938. Thus, in this situation 5.3.1 tells us that� 0938v2 � 4x2 is constant during the motion. At the moment of release, v � 0 and x � 2, so this constant
is � 0938 � 0 � 2 � 4 � 2 � 2 � 16. At the moment the object passes the equilibrium point, x � 0, so we can
solve: � 0938v2 � 16, for v � 18 � 48 ft/sec.

Example 5.23 A 1 kg mass extends a spring 8 cm. Suppose that a mass of 3 kg is attached to the spring,
then extended 20 cm. beyond equilibrium and released. What will be the velocity of the mass as it passes
the 10 cm. point?

First we must find the spring constant. The weight of a 1 kg mass is w � mg � � 1 � � 9 � 8 � � 9 � 8
newtons. From Hooke’s law we have � 9 � 8 ��� k � 0 � 08 � , so k � 9 � 8 � 0 � 08 � 122 � 5 newtons/meter. For
our 3 kg mass in motion, equation 5.3.1 is 3v2 � 122 � 5x2 � constant. At the moment of release, v � 0
and x � 0 � 2, so the constant is 122 � 5 � 0 � 2 � 2 � 4 � 9. At the 10 cm point, we solve 3v2 � 122 � 5 ��� 1 � 2 � 4 � 9,
giving v � 1 � 107 meters/second.

Example 5.24 What is the energy required to lift a payload of 1000 lbs a distance of 250 miles from the
surface of the earth?

We have to calculate the work required to move the payload 250 miles vertically from the earth’s
surface. Let s represent distance from the center of the earth, and let R be the radius of the earth.
According to Newton’s law of gravitation, the force of gravity is

(5.45) F � s � � � k
s2

for some constant k. Now, when s � R, for our payload, F � R � � � 103 lbs, so k � 103R2, and F � s � �� 103R2 � s2. Thus the work ”done by” gravity is

(5.46) W � � 	 R � 250

R

103R2

s2 ds � � 103R2

� � 1
s

� 




R � 250

R
� � 103R2

�
250

R � R � 250 � � �
Taking R � 3900 miles, we see that the energy required to lift this payload to 250 miles is

(5.47) 103 � 3900 � 250
4150

� 2 � 34 � 105 � mi � lbs � 12 � 4 � 109 � ft � lbs

Example 5.25 A cistern is a hole in the ground (usually lined with steel or cement) used to collect water.
Suppose that we have a cylindrical cistern of radius 8 feet and of depth 20 feet. If it is full of water, how
much work is required to empty the cistern?
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In this problem, the force is the weight of the water (one cubic foot of water weighs 62.5 lbs), but
the distance the water has to be moved depends upon how deep into the cistern we have gotten. So, we
again approach the problem dynamically, where the dynamic variable is the depth y of the water. At this
depth, the work required to lift the next slab of water (of thickness dy) is y � (weight of that slab). The
weight of that slab is 62.5 � (volume). The slab is a cylinder of radius 8 feet and thickness dx. Thus

(5.48) dW � � 62 � 5 � π � 8 � 2ydy �
Since the cistern is 20 feet deep, the total work then is the integral

(5.49) 	 20

0
62 � 5π � 8 � 2ydy � 4000π

y2

2 



20

0
� 8 � 105π

ft � lbs.

Example 5.26 Suppose instead that the cistern, of the same dimensions, has a parabolic profile, fol-
lowing the curve y � � 5 � 16 � x2. Now, to lift the slab of thickness dy at a depth y takes the amount of
work

(5.50) dW � � 62 � 5 � πx2ydy �

because the radius at this level is now x. Since x2 � � 16 � 5 � y, the total work is given by

(5.51) 	 20

0
62 � 5π

16
5

y2dy � 200π
y3

3 




20

0
� 5 � 33 � 105π

�
5.4. Mass and Moments

Mass is another concept which is accumulative, and so can be calculated by integration. An object is
said to be homogeneous if its composition is everywhere the same. In this case, mass is proportional to
volume, where the constant of proportionality is denoted δ , the density. Thus, for example, the density
of water is 1 g/cc, or 62.5 lbs/cu.ft. If the object is inhomogeneous, then its density will vary as we move
around the object. For x a point on the object, we let δ � x � be its density at that point - in the sense that
dM � δ � x � dV at the point: the ratio of the mass to volume of a small cube centered at x is approximately
δ � x � .
Example 5.27 A cistern is formed by rotating the curve y � x4 from x � 0 to x � 1 yd. around the y-axis.
The cistern is filled with muddy water which has settled, so that the density of the water at a height y
from the bottom is δ � y � � � 1 � 02 � � 02y2 � 62 � 5 lbs/cu.ft (see figure 5.15). What is the total weight of the
fluid contained in the cistern?

We calculate the weight by accumulating fluid along the y-axis, from y � 0 to 1. At a height y, the
weight of the disc of height dy is dW � δ � y � dV , and dV � πr2dy, where r is the radius of that disc. Since
the profile is the curve x � y1 � 4, we have dW � πδ � y � y1 � 2dy. Finally, since our spatial measurements
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Figure 5.15

PSfrag replacements

y � x4

are given in yards, we convert the density to lbs/yd: δ � y � � � 1 � 02 � � 02y2 � � 62 � 5 � � 27 � lbs/cu.yd. Thus the
weight is

(5.52) W � 	 1

0
� 62 � 5 � � 27 � π �

1 � 02 � � 02y2 � y1 � 2dy � 5301 � 3 	 1

0
� 1 � 02y1 � 2 � � 02y5 � 2 � dy

(5.53) � 5301 � 3 � � 1 � 02 � 2
3

y3 � 2 � � � 02 � 2
7

y7 � 2
� 





1

0
� 3574 � 6 lbs

Example 5.28 A baseball bat can be considered as a cone of height 28 in, and of base radius 1.5 in. If
the bat is made of hickory, of density 0.0347 lb/in3, what is the weight of the bat?

We accumulate the weight of the bat from its vertex to its base, At a distance x in from the vertex, a
slice of thickness dx has volume dV � πr2dx, where r is the radius at that point. By similar triangles,
r � 1 � 5 � x � 28, so r � 1 � 5x � 28 � � 0535x. Then the weight of the bat is

(5.54) W � 	 δdV � 	 28

0
��� 0347 � π ��� 0535x � 2dx � � 3 � 12 � 10


 4 � 	 2

0
8x2dx � 2 � 283 lbs

�
5.4.1 Moments

Suppose that we have two small objects situated on a plane, and L is a line which runs between the
objects (see figure 5.16).

Archimedes observed that the objects are balanced around the line L if the product of the mass and
the distance to the line is the same for the two objects. By “balance” we mean this: if the line L were a
rod in space which is free to rotate, and the objects were attached to this rod by arms perpendicular to
the rod (as in the figure), then the rod will not rotate if this condition is met. This product we call the
moment of the object about the line L : MomL � � mass � � distance � . If we take distance to be directed:
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Figure 5.16
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Figure 5.17
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negative on one side of the line, and positive on the other, Archimedes’ Law is that a system is in balance
about a line L if the sum of the moments about L is zero. Phrased this way, the law applies to a system
of many masses; for example the system in figure 5.17 is in balance.

Thus, moment is an accumulative concept, and we can discover the moment for any object by inte-
gration. We shall consider only planar homogeneous objects of density 1, so that mass and area are the
same. The first method for finding moment is to sweep out the region in the direction perpendicular to
the line; at each stage adding the moment of a differential rectangle at a fixed distance from the line.

Suppose, to start with, we wish to find the moment about the y-axis � x � 0 � of a region is bounded by
the curves y � f � x � � y � g � x � , from x � a to x � b (see figure 5.18). We calculate the moment by adding
the moments of infinitesimal strips, starting at x � a, and going to x � b. At a point x, the next strip
has height f � x � � g � x � and width dx, so its mass is � f � x ��� g � x ��� dx, and the moment about the y-axis is
dMomx � 0 � distance � mass � x � f � x � � g � x ��� dx. The moment of the entire region is the integral of this
differential from a to b:

(5.55) Mom � x � 0 � � 	 b

a
x � f � x � � g � x � � dx

for the region of figure 5.18.

Figure 5.18
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Example 5.29 Consider the region bounded by the coordinate axes and the line 4x � 3y � 12 (see figure
5.19). Find the moments of this region about the coordinate axes.

Figure 5.19

PSfrag replacements

3

4

4x � 3y � 12

To find Mom � x � 0 � , we sweep out along the x axis from x � 0 to x � 3. The height of the strip at a

point x is y � � 12 � 4x � � 3, and the distance from the line x � 0 is x. Thus dMomx � 0 � � 1 � 3 � x � 12 � 4x � dx,
and the moment is

(5.56) Mom � x � 0 � � 	 3

0

1
3

�
12x � 4x2 � dx � 1

3

�
6x � 4x3

3

� 




3

0
� 6 �

To find the moment about the x-axis, we sweep the region out in the vertical direction from y � 0 to
y � 4. At a point y, the width of the strip is x � � 12 � 3y � � 4, so dMom � y � 0 � � � y � 4 � � 12 � 3y � dy, so

(5.57) Mom � y � 0 � � 	 4

0

1
4

�
12y � 3y2 � dy � 8 �

Example 5.30 Find the moment about the y-axis of the region bounded by the x axis and the curve
y � � 16 � 10x � x2 (see figure 5.20).

Figure 5.20
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The region will be swept out along the x-axis from the points where the curve intersects the x-axis.
We solve 0 � � 16 � 10x � x2 � � � 8 � x � � 2 � x � . The region thus lies between the lines x � 2 and
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x � 8. At an intermediate point x, the differential strip is at distance x from the y-axis, and the mass is��� 16 � 10x � x2 � dx, so

(5.58) dMom � x � 0 � � x ��� 16 � 10x � x2 � dx

and

(5.59) Mom � x � 0 � � 	 8

2
x ��� 16 � 10x � x2 � dx � 	 8

2
��� 16x � 10x2 � x3 � dx

(5.60) � � � 8x2 � 10
3

x3 � x4

4

� 




8

2
� 180 �

Example 5.31 Find the moment about the line x � 4 of the same region.
Here we have the same analysis, but now the distance from the strip to the balance axis is x � 4, so

(5.61) dMom � x � 4 � � � x � 4 � � � 16 � 10x � x2 � dx �
Note that if x � 4 this will be negative, and if x

� 4 it is positive - this is just what we want because we
want the contributions of the pieces on either side of the axis to be opposite. To find the moment we
integrate;

(5.62) Mom � x � 4 � � 	 8

2
� x � 4 � ��� 16 � 10x � x2 � dx � 	 8

2
� 64 � 56x � 14x2 � x3 � dx � 36 �

Since the answer is positive, this region is overbalanced to the right. Note that the region is symmetric
about the line x � 5, so that it is perfectly balanced about the line x � 5. If we calculate Mom � x � 5 � , we’ll
get 0.

Example 5.32 Find the moment of a rectangular strip of width w and height h about the line through
one end.

This is Mom � y � 0 � of the region sketched in figure 5.21. Sweeping out from y � 0 to y � h, we have

dMom � y � 0 � � ywdy, so Mom � y � 0 � ��	 h

0
ywdy � 1

2
wh2 �

Figure 5.21
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Writing the moment as wh � h � 2 � , we see that this is the moment of a point object of the same mass (wh
situated at the midpoint of the strip. This observation leads to an alternative method for calculating the
moment about y � 0 without having to change the variable of integration.

Consider the region bounded by the curves y � f � x � and y � g � x � and the lines x � a and x � b, as in
figure 5.18. We calculate the moment about the x-axis by sweeping out in the x direction. At any point x
the differential piece to be added is a vertical rectangular strip of mass � f � x ��� g � x � � dx. The midpoint of
this rectangle is � 1 � 2 � � f � x � � g � x � � . Thus

(5.63) dMom � y � 0 � � 1
2
� f � x � � g � x ��� � f � x � � g � x � � dx �

Example 5.33 Find the moment about the x-axis of the region in the first quadrant bounded by the lines
y � 3x � y � 2x � x � 5 (figure 5.22).

Figure 5.22
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We sweep out from x � 0 to x � 5. The differential strip at the point x has the mass � 3x � 2x � dx � xdx,
and its midpoint is � 1 � 2 � � 3x � 2x � � � 5 � 2 � x. Thus

(5.64) dMom � y � 0 � � 5
2

x2dx �

so

(5.65) Mom � y � 0 � � 	 5

0

5
2

x2dx � 625
6

�
To find the moment about the y-axis, we have

(5.66) dMom � x � 0 � � x � 3x � 2x � dx � x2dx

so Mom � x � 0 � � � 5
0 x2dx � 125 � 3.

Example 5.34 Find the moment about the x-axis of the region of example 30, bounded by the x axis
and the curve y � � 16 � 10x � x2.
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At a point x between 2 and 8, the differential mass is ydx, and the midpoint of that strip is y � 2, so
dMom � y � 0 � � � y2 � 2 � dx. Thus

(5.67) Mom � y � 0 � � 1
2
	 8

2
��� 16 � 10x � x2 � 2dx � 648

5
�

�
5.4.2 Centroids

Let R be a region in the plane and L a line in the plane. If R lies to the right of the line, then the moment
of R about L, MomLR, is positive, and if R is to the left of L, then MomLR is negative. So, if we look at all
lines with a given slope, as we move from one side of R to the other, the moment about that line changes
sign. Thus, there is a particular line with a given slope for which the moment of R is zero. The region
R is balanced about this line: if R were to walk a tightrope in this direction, it would have the tightrope
directly below this line. If we change the slope, we get another line of balance in the new direction.
These two lines intersect in a point. It turns out that the line of balance of any slope goes through this
point, called the centroid, or center of mass of the region R

Definition 5.2 The centroid of a region R in the plane is that point in the plane such that for any line L
through that point, MomLR � 0.

To calculate the centroid, it is enough to look at lines of two different slope, in particular, horizontal
and vertical lines. Suppose � x̄ � ȳ � is the centroid of R, so that the moment about the line x � x̄ is zero.
The distance from any point � x � y � to this line is x � x̄, so we have

(5.68) Mom � x � x̄ � � R � ��	 � x � x̄ � dA � 0

or � xdA � x̄� dA, which says that Mom � x � 0 � � R ��� x̄Mass � R � . Similarly we get Mom� y � 0 � � R ��� ȳMass � R � .
Thus the coordinates for the centroid are

(5.69) x̄ � Mom � x � 0 � � R �
Mass � R � � ȳ � Mom � y � 0 � � R �

Mass � R � �
Example 5.35 Find the centroid of the triangle in example 29.

This is a right triangle with sides of length 4, 3, so the mass is � 1 � 2 � 3 � � 4 ��� 6. We found Mom � x � 0 � �
6 � Mom � y � 0 � � 8, so the centroid is at � x̄ � ȳ � � � 6 � 6 � 8 � 6 � � � 1 � 1 � 33 � (see figure 5.23).

Figure 5.23
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Example 5.36 Find the centroid of the region in the first quadrant bounded by the lines y � 3x � y �
2x � x � 5 (figure 5.22).

In example 5.33, we found Mom � x � 0 � � 125 � 3 � Mom � y � 0 � � 625 � 6. The mass is

(5.70) Mass � 	 5

0
� 3x � 2x � dx � x2

2 




5

0
� 25

2
�

Thus x̄ � � 125 � 3 � ��� 25 � 2 � � 10 � 3 and ȳ � � 625 � 6 � � � 25 � 2 � � 25 � 3.

Example 5.37 Find the centroid of the region bounded by the y axis and the curve y � � 16 � 10x � x2

(see figure 5.20).
First of all, since the region is symmetric about the line x � 5, we have x̄ � 5. In example 5.34, we

found Mom � y � 0 � � 648 � 5. It remains to calculate the mass of the region which is

(5.71) 	 8

2

� � 16 � 10x � x2 � dx � � � 16x � 5x2 � x3

3

� 




8

2
� 36 �

Thus ȳ � � 648 � 5 � � 36 � 3 � 6. The centroid is at � 5 � 3 � 6 � . As a final application of moments, we derive

Theorem 5.1 (Pappus’ Theorem) Let R be a region in the right half plane, and consider the solid
obtained by rotating R about the y-axis. The volume of this solid is the product of the area of R and the
distance traveled by the centroid of R.

This is easy to see using the shell method for finding the volume. By that method,

(5.72) Volume � 2π 	 xdA

where the integration is taken along the x-axis between the bounding lines. But � xdA � Mom � x � 0 � �
x̄ � Area ��� where the centroid has coordinates � x̄ � ȳ � . So

(5.73) Volume � 2π x̄ � Area ���
which is what is asserted by by Pappus’ theorem. Although at Pappus’ time the calculus didn’t even exist
(in fact, neither did algebra), he demonstrated this result in essentially the same way, using Archimedes’
theory of moments.

Example 5.38 Find the volume of the solid ring obtained by rotating the disc � x � 5 � 2 � y2 � 16 about
the y-axis.

The region being rotated is the circle centered at � 5 � 0 � and of radius 4. Clearly the centroid of a disc
is its center, so x̄ � 5. Thus the volume is 2π � 5 � π � 4 �2 � 160π2 �


