
VI. Transcendental Functions

6.1 Inverse Functions

The functions ex and lnx are inverses to each other in the sense that the two statements

y = ex , x = ln y

are equivalent. In general, two functions f, g are said to be inverse to each other when the
statements

(6.1) y = f(x) , x = g(y)

are equivalent for x in the domain of f , and y in the domain of g. Often we write g = f−1 and
f = g−1 to express this relation. Another way of giving this citerion is

f(g(x)) = x g(f(x)) = x .

Example 6.1. Find the inverse function for f(x) = 3x− 7. We write y = 3x− 7 and solve for x
as a function of y:

(6.2) x =
y + 7

3
.

The equations y = 3x − 7 and x = (y + 7)/3 are equivalent for all x and y, so (6.2) gives us the
formula for the inverse of f : f−1(y) = (y + 7)/3. Since it is customary to use the variable x for
the independent variable, we should write:

f−1(x) =
x + 7

3
.

Example 6.2. Find the inverse function for

f(x) =
x

x + 1
.

We let y = x/(x + 1), and solve for x in terms of y:

(6.3) yx + y = x so that y = x(1− y) ,

so that
x =

y

1− y
.

Thus
f−1(x) =

x

1− x
.

Notice that -1 is excluded from the domain of f , and 1 is excluded from the domain of f−1. In
fact, we see that these substitutions in equations (6.3) lead to contradictions.

We have to be careful, in discussing inverses, to clearly indicate the domain and range, otherwise
we have ambiguities and make mistakes.
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Example 6.3. x2 and
√

x appear to be inverses since (
√

x)2 = x. But this doesn’t work if x

is negative, since the symbol √ just gives the positive root,
√

x2 = |x|. To make the statement
accurate, we have to specify the domain of the squaring function: the function f(x) = x2 whose
domain is the set of nonnegative numbers, has the inverse function g(x) =

√
x. When the domain is

taken to be all numbers, f(x) = x2 does not have an inverse, since, for each positive number y, there
are two values of x such that x2 = y. Note, though, if we specify the domain of f(x) = x2 to be all
nonpositive numbers, then it has the inverse defined for all nonnegative numbers: h(x) = −

√
x.

We illustrate this graphically in figure 6.1.
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Figure 6.1

In the first graph each horizontal line y = y0 intersects the graph in two points for y0 > 0, and in
no points for y0 < 0. So the domain of an inverse function can contain no negative numbers, and
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for positive numbers, there are 2 choices of inverse, one for the function x2, x nonnegative, and
the other for x2, x nonpositive.

In general, this provides a graphical criterion for a function to have an inverse:

Proposition 6.1. Let y = f(x) for a function f defined on the interval a ≤ x ≤ b. Let f(a) =
α, f(b) = β. If, for each γ between α and β the line y = γ intersects the graph in one and only
one point, then f has an inverse defined on the interval between α and β.

For if (c, γ) is the point of intersection of the graph with the line y = γ, define f−1(γ) = c.

For a continuous function, we know, from the Intermediate Value Theorem of Chapter 2, that each
such line y = γ intersects the graph in at least one point. Thus for continuous functions, we can
restate the proposition as

Proposition 6.2. Let y = f(x) for a continuous function f defined on the interval a ≤ x ≤ b. Let
f(a) = α, f(b) = β. If the condition

(6.4) x1 6= x2 implies f(x1) 6= f(x2)

then f has an inverse defined on the interval between α and β.

For a differentiable function, it follows from Rolle’s theorem of chapter that condition (6.4) holds
if f ′(x) 6= 0 for all a ≤ x ≤ b.

Proposition 6.3. Let y = f(x) for a differentiable function f defined on the interval a ≤ x ≤ b.
Let f(a) = α, f(b) = β. If f ′(x) 6= 0 in the interval, then f has an inverse defined on the interval
between α and β.

Example 6.4. Let f(x) = x2 − x. Find the domains for which f has an inverse, and find the
inverse function.

First, differentiate: f ′(x) = 2x − 1. Thus f ′(x) < 0 for x < 1/2, and f ′(x) > 0 for x > 1/2, so
we should be able to find inverses for f on each of the domains (−∞, 1/2), (1/2,∞).To find the
formula for the inverse, let y = x2 − x and solve for x in terms of y. To do this, we write the
equation as x2 − x− y = 0, and use the quadratic formula:

x =
−1±

√
1 + 4y

2
.

How convenient: we’re looking for two possible inverses, and here we have two choices. Notice first
that because of the square root sign, the domain of y must be y ≥ −1/4. We conclude that, in the
domains x ≥ 1/2, y ≥ −1/4 the following statements are equivalent:

y = x2 − x , x =
−1 +

√
1 + 4y

2

and thus the inverse to f(x) = x2 − x defined for x ≥ 1/2 is the function defined on the domain
x ≥ −1/4 by

(6.5) f−1(x) = (−1 +
√

1 + 4x)/2 .
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Similarly, in the domains x ≤ 1/2, y ≥ −1/4 the following statements are equivalent:

y = x2 − x , x =
−1−

√
1 + 4y

2

and thus the inverse to f(x) = x2 − x defined for x ≤ 1/2 is the function defined on the domain
x ≥ −1/4 by by f−1(x) = (−1−

√
1− 4x)/2.

Example 6.5. Let

f(x) =
ex − e−x

2
.

This function is called the hyperbolic sine. The hyperbolic sine has an inverse function defined for
all real numbers. First of all f ′(x) = (ex + e−x)/2 > 0 for all x, so f has an inverse function.
Secondly,

lim
x→−∞

f(x) = −∞ and lim
x→∞

f(x) = ∞

so the range of f , and thus the domain of its inverse, is all real numbers. We now find a formula
for the inverse function. Let y = f−1(x), so that

x = f(y) =
ey − e−y

2
.

Multiply both sides of the equation by 2ex, giving

2xey = e2y − 1 or e2y − 2xey − 1 = 0 .

Using the quadratic formula we find

ey =
2x±

√
4x2 + 4
2

= x±
√

x2 + 1 .

Since this is positive for all x, we must have ey = x +
√

x2 + 1, and finally

y = ln(x +
√

x2 + 1)

is the inverse hyperbolic sine.

Proposition 6.4. Suppose that f and g are differentiable functions inverse to each other in their
respective domains. Let y = g(x). Then

(6.6) g′(x) = 1/f ′(y) .

To see this, differentiate the relations x = f(y), y = g(x) implicitly with respect to x:

1 = f ′(y)
dy

dx
,

dy

dx
= g′(x) ,

so
g′(x) =

dy

dx
=

1
f ′(y)

.
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Example 6.6. Let us illustrate this proposition with the exponential and logarithmic functions.
Recall that y = lnx is defined as being equivalent to x = ey. Differentiate that equation with
respect to x implicitly .

1 = ey dy

dx
so that

dy

dx
=

1
ey

.

Since ey = x, we obtain the formula for the derivative of the logarithm:

d

dx
lnx =

1
x

.

Example 6.7. Let y = f−1(x) be the function defined on the domain x ≥ 2 which is inverse to
f(x) = x2 − x (recall example 6.4). We find the derivative of f−1(x) .First, write:

y = f−1(x) is equivalent to x = y2 − y .

Differentiate implicitly:

1 = 2y
dy

dx
− dy

dx
so that

dy

dx
=

1
2y − 1

.

or

(6.7)
d

dx
f−1(x) =

1
2f−1(x)− 1

.

Since we have an explicit formula for f−1(x) (see equation (6.5)), we may substitute that in (6.7)
to obtain

d

dx
f−1(x) =

1√
1 + 4x

.

Of course, in the above example the inverse functions are explicit, and so we can make a substitution
for f−1(x) on the left side of (6.7), but that may not always be the case.

Example 6.8. Suppose that g is the inverse to the function f(x) = x2 − 4x− 44 for x > 2. Find
g′(1).

Note, since the parabola has its vertex where x = 2, the function f does have an inverse in x > 2.
Let y = g(x). Since g is inverse to f , x = f(y) = y2 − 4y − 44 and f ′(y) = 2y − 4, so

g′(x) =
1

2y − 4
.

To calculate g′(1) we find the value of y corresponding to x = 1 : 1 = y2−4y−44 has the solutions
−9, 5. Since f is restricted to values greater than 2, we must have g(1) = 5. Now f ′(y) = 2y − 4,
so

g′(1) =
1

f ′(5)
=

1
2(5)− 4

=
1
6

.

Problems 6.1

1. Find the function inverse to
f(x) =

2x + 1
x− 3

.

126



2. Consider the function

f(x) =
x2 − 1
x2 + 1

with domain the set of positive numbers. Show that, on this domain, f has an inverse, and find
the inverse function.

3. Find the inverse function, and its domain, for

f(x) =
ex + e−x

2
.

If possible, find a formula for f−1. 4. Consider the function

f(x) =
x

x2 + 1
,

with domain the set of all real numbers. Graph the function, and observe that by considering the
intervals (−∞,−1), (−1, 1), (1,+∞ as distinct domains for the function f , that f has an inverse
on each of these intervals. Find those inverses and their domains.

5. Consider f(x) = x +
√

x2 + 1 with domain the set of positive real numbers. Show that f has
an inverse, and find the inverse function.

6. Find g′((e + e−1)/2) where g is the inverse to the function of problem 2.

7. Show that f(x) = x3 + 3x + 1 has an inverse. Find

d

dx
f−1(x)

∣∣
x=1

.

8 . Let f(x) = x lnx for x > 1. Show that f has an inverse g. Noting that f(e2) = 2e2, find
g′(2e2).

6.2 Inverse Trigonometric Functions

In this section we use the ideas of the preceding section to define inverses for the trigonometric
functions, and calculate their derivatives. Since the trigonometric functions are periodic, we will
have to restrict the domain of definition in order to obtain a well-defined inverse.

We start with the tangent function. Recall that tanx is strictly increasing on the interval (π/2, π/2)
and takes every value between −∞ and ∞, and then repeats itself in intervals of length π. Thus,
if we restrict the domain of the tangent to the interval (π/2, π/2), it has an inverse there, defined
for all real numbers.

Definition 6.1. The function y = arctanx is defined on the interval (−∞,∞), taking values in
(−π/2, π/2) .by the condition x = tan y.

The inverse tangent (or arctangent) is sometimes denoted by y = tan−1(x). See figure 6.2 for the
graph of the inverse tangent.
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Proposition 6.5.
d

dx
arctanx =

1
(1 + x2)

,

∫
1

(1 + x2)
dx = arctan x + C

To see this, we start with the equation x = tan y that defines y as the arctangent of x. We get:

1 = sec2 y
dy

dx
.

Now, since sec2 y = tan2 y + 1, we can replace sec2 y by x2 + 1, obtaining

1 = (x2 + 1)
dy

dx
or

dy

dx
=

1
x2 + 1

,

which is just the first equation. The second is a restatement in terms of integrals.

Similarly, we define y = arcsinx by the condition x = sin y. However, since the sine function is
periodic, the equation sin y = x has many solutions for x between −1 and 1. But, if we insist
that y be between −π/2 and π/2, there is only one solution. So, to pick a definite inverse for
the sine function, we specify that its domain is the interval [−1, 1], and its range (set of values) is
[−π/2, π/2]. Then, with this specification, it is true that the equation sin y = x has one and only
one solution. That solution we call the inverse sine function, denoted arcsinx or sin−1 x.

Definition 6.2. The function y = arcsinx is defined on the interval (−1, 1), taking values in
−π/2, π/2] .by the condition x = sin y. See figure 6.3 for a graph of y = arcsinx.
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Proposition 6.6.
d

dx
arcsinx =

1√
1− x2

,

∫
1√

1− x2
dx = arcsinx + C

Differentiate x = sin y implicitly:

1 = cos y
dy

dx
.

Now, since sin2 y + cos2 y = 1, writing this as x2 + cos2 y = 1, and thus replace cos y by
√

1− x2:

1 =
√

1− x2
dy

dx
or

dy

dx
=

1√
1− x2

.

We took the positive root for, in the chosen domain for arcsinx, it is increasing.

Turning to the cosine, since cos(−x) = cos(x), it is not possible to define an inverse if we take
the domain of cos to be any interval about 0. However, we note that since the cosine function is
strictly decreasing between 0 and π, we can define an inverse on the interval (−1, 1) taking values
between 0 and π: this is the inverse cosine, denoted arccos x. (See figure 6.4 for the graph).

Definition 6.3. The function y = arccos x is defined on the interval (−1, 1), taking values in
(0, π), by the condition x = cos y.

Proposition 6.7.
d

dx
arccos x = − 1√

1− x2
,

∫
1√

1− x2
dx = − arccos x + C

The verification is the same as that of proposition 6.6, except that this time, since the arccosine is
decreasing, we take the negative square root. Note that, for any acute angle α, its complementary
angle is π/2− α, thus sinα = cos(π/2− α). Letting x = sin α, so that α = arcsinx , this tells us
that arccos x = π/2−α = π/2−arcsinx, explaining the coincidence in the formulas of propositions
6.6 and 6.7.

Example 6.9. Find ∫
xdx

x4 + 1
.

129



Make the substitution u = x2, du = 2xdx. This gives us

1
2

∫
du

u2 + 1
=

1
2

arctanu + C =
1
2

arctan(x2) + C .

Example 6.10. Find, for any constant a: ∫
dx

x2 + a2
.

Make the substitution x = au, dx = adu. The integral becomes∫
adu

a2u2 + a2
=

1
a

∫
du

u2 + 1
=

1
a

arctanu + C =
1
a

arctan(
u

a
) + C .

Problems 6.2

1. tan(arccos x) =

2.
1
x2
− tan2(arccos x) =

3. Show that arcsinx + arccos x is constant.

4. Differentiate : g(x) = arcsin(lnx) .

5. Differentiate : y = arccos
√

x

6. Find the equation of the line tangent to the curve y = arctan x at the point (
√

3, π/3).

7. Find all points at which the tangent line to the curve y = arcsinx has slope 4.

8. What is the maximum value of the derivative of f(x) = arccos x?

9.

∫
xdx√
1− x4

=

10. Show that f(x) = sec x has an inverse in the interval (0, π/2). The inverse is denoted y =
sec−1 x (called the arcsecant). Find the formula for the derivative of the arcsecant.

11.

∫
dx√

a2 − x2
=

12. The curve y =
1√

1 + x2
1 ≤ x ≤

√
3

is rotated around the x-axis. Find the volume of the enclosed solid.
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6.3 First Order Linear Differential Equations

Definition 6.4. A first order linear differential equation is a differential equation of the type

(6.8)
dy

dx
+ P (x)y = Q(x) .

It is said to be homogeneous if the function Q(x) is 0.

The equation is of “first order” since it involves only the first derivative, and linear since the
equation expresses the first derivative of the unknown function y as a linear function of y.

If P and Q are constant functions we can easily solve the differential equation by separation of
variables.

Example 6.11. To solve, say
dy

dx
= 2y − 3

we rewrite the equation in the form (2y−3)−1dy = dx. These differentials integrate to the relation

1
2

ln(2y − 3) = x + C or
√

2y − 3 = Kex .

Squaring both sides and solving for y, we get the general solution

(6.9) y =
Ke2x + 3

2
.

For example, to find the solution with initial value y(0) = 5, we first solve for K:

5 =
Ke2(0) + 3

2
,

so K = 7, and the particular solution is y = (7e2x + 3)/2.

The acute reader will object that the integral of (2y − 3)−1dy is (1/2) ln |2y − 3|, and if we follow
through with this, this seems to lead to the alternative solution

(6.10) y =
3−Ke2x

2
.

However, this is the same as (6.9), just with a different choice for the constant K. If we use (6.10)
with the same initial conditions y(0) = 5, we find this K = −7, giving the same final answer. For
this reason it is often the case that the absolute value is ignored.

Now, we note that the homogeneous equation (the case Q(x) = 0) is separable:

Example 6.12. Solve y′ − 2xy = 0, y(2) = 1.

We separate the variables: y−1dy = 2xdx and integrate:

ln y = x2 + C .
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Substituting the initial condition allows us to solve for C : ln 1 = 4 + C, so C = −4. Thus the
particular solution is given by

ln y = x2 − 4

which exponentiates to
y = ex2−4 .

Now, to solve the general equation, we make a crucial observation:

Proposition 6.8. Given the differential equation, y′ + P (x)y = Q(x), suppose that v solves the
homogeneous equation: v′ + Pv = 0. Then, making the substitution y = uv leads to a simple
integration for the unknown function u.

Let’s make the substitution in the given equation. Since y′ = uv′ + u′v, we have

uv′ + u′v + Puv = Q , or u′v + u(v′ + Pv) = Q , or u′v = Q ,

since v′ + Pv = 0. But then u′ = Qv−1, and we find u by integration.

This leads to a method for solving the general first order differential equation

y′ + Py = Q .

1. Find a solution v of the corresponding homogeneous equation.
2. Make the substitution y = uv, leading to an integration to find the new unknown function

u.

Example 6.13. Solve
dy

dx
=

y + 1
x

, y(1) = 2 .

The homogeneous equation is y′ − x−1y = 0. which has the solution y = Kx. Try y = ux in
the given equation. This leads us to the equation u′x = x−1, or u′ = x−2, which has the solution
u = −x−1 + C. Thus the general solution is

y = ux = (
−1
x

+ C)x = −1 + Cx .

Now solve for C using the initial conditions y(1) = 2: 2 = −1 + C, so C = 3 and the solution is
y = 3x− 1.

Now the solution of the homogeneous equation y′ + Py = 0 is e−
∫

Pdx. With the substitution
y = ue−

∫
Pdx, the terms involving an undifferentiated u disappear precisely because e−

∫
Pdx solves

the homogeneous equation. For this reason e−
∫

Pdx is called an integrating factor. This method is
called that of variation of parameters; the idea being to first find the general solution of an easier
equation, and then trying that in the original equation, but with the constant replaced by a new
unknown function. This method is very productive in solving very general types of differential
equations.

Example 6.14. Solve y′ − 2xy = x, y(0) = 2 . First, as in example 6.12, solve the homogeneous
equation y′ − 2xy = 0, leading to

y = Kex2
.
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Now substitute y = uex2
into the original equation to obtain

u′ex2
= x or u′ = xe−x2

.

This integrates to

u = −1
2
e−x2

+ C ,

so that our general solution is y = uex2
with this u:

y =
(
− 1

2
e−x2

+ C
)
ex2

= −1
2

+ Cex2
.

Notice that the constant function −1/2 (found by taking C = 0) is a solution of the differential
equation. However, this doesn’t satisfy our initial condition: y(0) = 2. This gives us C = 5/2, so
the solution we seek is

y = −1
2

+
5
2
ex2

.

Example 6.15. Find the general solution to xy′ − y = x2.

We first must put this in the form (6.8):

dy

dx
+

y

x
= x .

The solution to the homogeneous equation is y = Kx. So, we try y = ux, and obtain the equation

u′x = x ,

which has the general solution u = x + C. Thus the general solution to the original problem is

y = ux = (x + C)x = x2 + Cx .

Remember the steps to solve the equation y′ + P (x)y = Q(x):

1. Solve the homogeneous equation y′ + P (x)y = 0, obtaining y = e−
∫

Pdx.

2. Try the solution y = ue−
∫

Pdx, leading to the equation for u : u′e−
∫

Pdx = Q(x), or u′ =

Q(x)e
∫

Pdx.

Solve for u, and put that solution in the equation y = ue−
∫

Pdx. If an initial value is specified,
now solve for the unknown constant.

This can, of course, be summarized in a formula:

Proposition 6.9 The general solution of the first order linear differential equation

y′ + Py = Q
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is
y = e−

∫
Pdx( ∫

Qe
∫

Pdxdx + C) .

We strongly advise students to remember the method rather than this formula.

A useful fact to know about linear first order equations is that if we know one particular solution,
then we only have to solve the homogeneous equation to find all solutions.

Proposition 6.10. Suppose that yp is a solution of the differential equation y′ + Py = Q. Then
every solution is of the form

y = yp + Ke−
∫

Pdx ;

that is, every solution is of the form yp + yh, where yh is a solution of the homogeneous equation.

For suppose that y is any solution of the equation: y′ + Py = Q. Then (y − yp)′ + P (y − yp) =
(y + Py)− (yp + Pyp) = Q−Q = 0 so solves the homogeneous equation.

Example 6.16. Find the solution of the equation y′ − 2y + 5 = 0 such that y(0) = 1.

Now the constant function yp = 5/2 solves the equation, since y′p = 0. The general solution of
the homogeneous equation is y = Ke2x, so the general solution of the original equation is of the
form y = (5/2) + Ke2x. Substituting y = 1, x = 0, we find 1 = 5/2 + K, so K = −3/2, and the
particular solution we want is

y =
1
2
(5− 3e2x) .

Example 6.17. A body falling through a fluid is subject to the force due to gravity as well as
a resistance, due to the viscosity of the fluid, proportional to its velocity. (Here we are assuming
that the density of the body is much higher than the density of the fluid, and that its shape is
not relevant). Let x(t) represent the distance fallen at time t and v(t) its velocity. The hypothesis
leads to the equation

dv

dt
= −kv + g

for some constant k (g is the acceleration of gravity), called the coefficient of resistance of the
fluid. Notice that the constant v = g/k is a solution of the equation. This is called the “free fall
velocity”, and for any falling body it will accelerate until it reaches this maximum velocity. By
proposition 6.10, the general solution is

v(t) =
g

k
+ Ke−kt ,

for some constant k.

Example 6.18. Suppose a heavy spherical object is thrown from an airplane at 10000 meters,
and that the coefficient of resistance of air is k = 0.02. Find the velocity as a function of time.
What is the free fall velocity? Approximately how long does it take to reach the ground?

Here g = 9.8 m/sec2, so the free fall velocity is vp = 9.8/(.05) = 196 meters/sec. The general
solution to the problem is

v(t) = 196 + Ke−(.02)t .
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At t = 0, v = 0, so 0 = 196 + K, and our solution is

v(t) = 196(1− e−(.02)t) .

To answer the last question, we have to find distance fallen as a function of time, by integrating
the above:

x(t) = 196(t + 50e−(.02)t) + C .

At t = 0, x = 0; this gives C = −196(50), and the solution for our particular object:

x(t) = 196(t + 50(e−(.02)t − 1)) .

Now we want to solve for t when x = 10, 000. For large t, the exponential term is negligible, so T ,
the time to reach ground, is approximately given by the solution of

10, 000 = 196(T − 50)

so T = 101 seconds.
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Problems 6.3

1. Solve the initial value problem xy′ + y = x, y(2) = 5.

2. Solve the initial value problem: y′ = x(5− y), y(0) = 1.

3. Solve the initial value problem (x + 1)y′ = 2y, y(1) = 1.

4. Solve the initial value problem xy′ − y = x3, y(1) = 2.

5. Solve the initial value problem y′ − 2xy = ex2
, y(0) = 4.

6. Solve the initial value problem:

4y′ + 3y = ex , y(0) = 7 .

7. Solve the initial value problem:

xy′ − 3y = x2 , y(1) = 4 .

8. Solve the initial value problem y′ − 2xy = ex2
, y(0) = 4.

9. Solve the initial value problem: y′ + y = ex, y(0) = 5.

10. Solve the initial value problem : y′ +
y

x
= x, y(1) = 2 .
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