Go to the first, previous, next, last section, table of contents.
Hypergeometric functions are described in Abramowitz & Stegun, Chapters
13 and 15. These functions are declared in the header file
`gsl_sf_hyperg.h'.
- Function: double gsl_sf_hyperg_0F1 (double c, double x)
-
- Function: int gsl_sf_hyperg_0F1_e (double c, double x, gsl_sf_result * result)
-
These routines compute the hypergeometric function @c{${}_0F_1(c,x)$}
@math{0F1(c,x)}.
- Function: double gsl_sf_hyperg_1F1_int (int m, int n, double x)
-
- Function: int gsl_sf_hyperg_1F1_int_e (int m, int n, double x, gsl_sf_result * result)
-
These routines compute the confluent hypergeometric function
@math{1F1(m,n,x) = M(m,n,x)} for integer parameters m, n.
- Function: double gsl_sf_hyperg_1F1 (double a, double b, double x)
-
- Function: int gsl_sf_hyperg_1F1_e (double a, double b, double x, gsl_sf_result * result)
-
These routines compute the confluent hypergeometric function
@math{1F1(a,b,x) = M(a,b,x)} for general parameters a, b.
- Function: double gsl_sf_hyperg_U_int (int m, int n, double x)
-
- Function: int gsl_sf_hyperg_U_int_e (int m, int n, double x, gsl_sf_result * result)
-
These routines compute the confluent hypergeometric function
@math{U(m,n,x)} for integer parameters m, n.
- Function: int gsl_sf_hyperg_U_int_e10_e (int m, int n, double x, gsl_sf_result_e10 * result)
-
This routine computes the confluent hypergeometric function
@math{U(m,n,x)} for integer parameters m, n using the
gsl_sf_result_e10
type to return a result with extended range.
- Function: double gsl_sf_hyperg_U (double a, double b, double x)
-
- Function: int gsl_sf_hyperg_U_e (double a, double b, double x)
-
These routines compute the confluent hypergeometric function @math{U(a,b,x)}.
- Function: int gsl_sf_hyperg_U_e10_e (double a, double b, double x, gsl_sf_result_e10 * result)
-
This routine computes the confluent hypergeometric function
@math{U(a,b,x)} using the
gsl_sf_result_e10
type to return a
result with extended range.
- Function: double gsl_sf_hyperg_2F1 (double a, double b, double c, double x)
-
- Function: int gsl_sf_hyperg_2F1_e (double a, double b, double c, double x, gsl_sf_result * result)
-
These routines compute the Gauss hypergeometric function
@math{2F1(a,b,c,x)} for @math{|x| < 1}.
- Function: double gsl_sf_hyperg_2F1_conj (double aR, double aI, double c, double x)
-
- Function: int gsl_sf_hyperg_2F1_conj_e (double aR, double aI, double c, double x, gsl_sf_result * result)
-
These routines compute the Gauss hypergeometric function
@math{2F1(a_R + i a_I, a_R - i a_I, c, x)} with complex parameters
for @math{|x| < 1}.
exceptions:
- Function: double gsl_sf_hyperg_2F1_renorm (double a, double b, double c, double x)
-
- Function: int gsl_sf_hyperg_2F1_renorm_e (double a, double b, double c, double x, gsl_sf_result * result)
-
These routines compute the renormalized Gauss hypergeometric function
@math{2F1(a,b,c,x) / \Gamma(c)} for @math{|x| < 1}.
- Function: double gsl_sf_hyperg_2F1_conj_renorm (double aR, double aI, double c, double x)
-
- Function: int gsl_sf_hyperg_2F1_conj_renorm_e (double aR, double aI, double c, double x, gsl_sf_result * result)
-
These routines compute the renormalized Gauss hypergeometric function
@math{2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)} for @math{|x| < 1}.
- Function: double gsl_sf_hyperg_2F0 (double a, double b, double x)
-
- Function: int gsl_sf_hyperg_2F0_e (double a, double b, double x, gsl_sf_result * result)
-
These routines compute the hypergeometric function @c{${}_2F_0(a,b,x)$}
@math{2F0(a,b,x)}. The series representation
is a divergent hypergeometric series. However, for @math{x < 0} we
have
@math{2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)}
Go to the first, previous, next, last section, table of contents.