Go to the first, previous, next, last section, table of contents.

Radial Functions for Hyperbolic Space

The following spherical functions are specializations of Legendre functions which give the regular eigenfunctions of the Laplacian on a 3-dimensional hyperbolic space @math{H3d}. Of particular interest is the flat limit, @math{\lambda \to \infty}, @math{\eta \to 0}, @math{\lambda\eta} fixed.

Function: double gsl_sf_legendre_H3d_0 (double lambda, double eta)
Function: int gsl_sf_legendre_H3d_0_e (double lambda, double eta, gsl_sf_result * result)
These routines compute the zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, @math{L^{H3d}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta))} for @c{$\eta \ge 0$} @math{\eta >= 0}. In the flat limit this takes the form @math{L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta)}

Function: double gsl_sf_legendre_H3d_1 (double lambda, double eta)
Function: int gsl_sf_legendre_H3d_1_e (double lambda, double eta, gsl_sf_result * result)
These routines compute the first radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, @math{L^{H3d}_1(\lambda,\eta) := 1/\sqrt{\lambda^2 + 1} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta))} for @c{$\eta \ge 0$} @math{\eta >= 0}. In the flat limit this takes the form @math{L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta)}.

Function: double gsl_sf_legendre_H3d (int l, double lambda, double eta)
Function: int gsl_sf_legendre_H3d_e (int l, double lambda, double eta, gsl_sf_result * result)
These routines compute the l'th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space @c{$\eta \ge 0$} @math{\eta >= 0}, @c{$l \ge 0$} @math{l >= 0}. In the flat limit this takes the form @math{L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta)}.

Function: int gsl_sf_legendre_H3d_array (int lmax, double lambda, double eta, double result_array[])
This function computes an array of radial eigenfunctions @math{L^{H3d}_l(\lambda, \eta)} for @c{$0 \le l \le lmax$} @math{0 <= l <= lmax}.


Go to the first, previous, next, last section, table of contents.