Previous: claev2 Up: ../lapack-c.html Next: clagtm
NAME
CLAGS2 - compute 2-by-2 unitary matrices U, V and Q, such
that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0
B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0
)*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q
= ( x x ) ( B2 B3 ) ( 0 x ) where U = ( CSU SNU ), V = (
CSV SNV ),
SYNOPSIS
SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
CSV, SNV, CSQ, SNQ )
LOGICAL UPPER
REAL A1, A3, B1, B3, CSQ, CSU, CSV
COMPLEX A2, B2, SNQ, SNU, SNV
PURPOSE
CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
that if ( UPPER ) then
( -CONJG(SNU) CSU ) ( -CONJG(SNV) CSV )
Q = ( CSQ SNQ )
( -CONJG(SNQ) CSQ )
Z' denotes the conjugate transpose of Z.
The rows of the transformed A and B are parallel. Moreover,
if the input 2-by-2 matrix A is not zero, then the
transformed (1,1) entry of A is not zero. If the input
matrices A and B are both not zero, then the transformed
(2,2) entry of B is not zero, except when the first rows of
input A and B are parallel and the second rows are zero.
ARGUMENTS
UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper tri-
angular.
= .FALSE.: the input matrices A and B are lower tri-
angular.
A1 (input) REAL
A2 (input) COMPLEX A3 (input) REAL On
entry, A1, A2 and A3 are entries of the input 2-by-2
upper (lower) triangular matrix A.
B1 (input) REAL
B2 (input) COMPLEX B3 (input) REAL On
entry, B1, B2 and B3 are entries of the input 2-by-2
upper (lower) triangular matrix B.
CSU (output) REAL
SNU (output) COMPLEX The desired unitary matrix
U.
CSV (output) REAL
SNV (output) COMPLEX The desired unitary matrix
V.
CSQ (output) REAL
SNQ (output) COMPLEX The desired unitary matrix
Q.