Previous: slantr Up: ../lapack-s.html Next: slapll
NAME SLANV2 - compute the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form SYNOPSIS SUBROUTINE SLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ) REAL A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN PURPOSE SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form: [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] where either 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate eigenvalues. ARGUMENTS A (input/output) REAL B (input/output) REAL C (input/output) REAL D (input/output) REAL On entry, the ele- ments of the input matrix. On exit, they are overwritten by the elements of the standardized Schur form. RT1R (output) REAL RT1I (output) REAL RT2R (output) REAL RT2I (output) REAL The real and imaginary parts of the eigenvalues. If the eigenvalues are both real, abs(RT1R) >= abs(RT2R); if the eigenvalues are a complex conjugate pair, RT1I > 0. CS (output) REAL SN (output) REAL Parameters of the rotation matrix.