Previous: zhegs2 Up: ../lapack-z.html Next: zhegv
NAME ZHEGST - reduce a complex Hermitian-definite generalized eigenproblem to standard form SYNOPSIS SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) CHARACTER UPLO INTEGER INFO, ITYPE, LDA, LDB, N COMPLEX*16 A( LDA, * ), B( LDB, * ) PURPOSE ZHEGST reduces a complex Hermitian-definite generalized eigenproblem to standard form. If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. B must have been previously factorized as U**H*U or L*L**H by ZPOTRF. ARGUMENTS ITYPE (input) INTEGER = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); = 2 or 3: compute U*A*U**H or L**H*A*L. UPLO (input) CHARACTER = 'U': Upper triangle of A is stored and B is fac- tored as U**H*U; = 'L': Lower triangle of A is stored and B is factored as L*L**H. N (input) INTEGER The order of the matrices A and B. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A con- tains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper tri- angular part of A is not referenced. On exit, if INFO = 0, the transformed matrix, stored in the same format as A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) COMPLEX*16 array, dimension (LDB,N) The triangular factor from the Cholesky factoriza- tion of B, as returned by ZPOTRF. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value