Previous: zlaqsy Up: ../lapack-z.html Next: zlarf
 NAME
      ZLAR2V - apply a vector of complex plane rotations with real
      cosines from both sides to a sequence of 2-by-2 complex Her-
      mitian matrices,
 SYNOPSIS
      SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
          INTEGER        INCC, INCX, N
          DOUBLE         PRECISION C( * )
          COMPLEX*16     S( * ), X( * ), Y( * ), Z( * )
 PURPOSE
      ZLAR2V applies a vector of complex plane rotations with real
      cosines from both sides to a sequence of 2-by-2 complex Her-
      mitian matrices, defined by the elements of the vectors x, y
      and z. For i = 1,2,...,n
         (       x(i)  z(i) ) :=
         ( conjg(z(i)) y(i) )
           (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i)
      -conjg(s(i)) )
           ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)
      c(i)  )
 ARGUMENTS
      N       (input) INTEGER
              The number of plane rotations to be applied.
      X       (input/output) COMPLEX*16 array, dimension (1+(N-
              1)*INCX)
              The vector x; the elements of x are assumed to be
              real.
      Y       (input/output) COMPLEX*16 array, dimension (1+(N-
              1)*INCX)
              The vector y; the elements of y are assumed to be
              real.
      Z       (input/output) COMPLEX*16 array, dimension (1+(N-
              1)*INCX)
              The vector z.
      INCX    (input) INTEGER
              The increment between elements of X, Y and Z. INCX >
              0.
      C       (input) DOUBLE PRECISION array, dimension (1+(N-
              1)*INCC)
              The cosines of the plane rotations.
      S       (input) COMPLEX*16 array, dimension (1+(N-1)*INCC)
              The sines of the plane rotations.
      INCC    (input) INTEGER
              The increment between elements of C and S. INCC > 0.