Previous: ztgsja Up: ../lapack-z.html Next: ztprfs
NAME ZTPCON - estimate the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or the infinity-norm SYNOPSIS SUBROUTINE ZTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK, INFO ) CHARACTER DIAG, NORM, UPLO INTEGER INFO, N DOUBLE PRECISION RCOND DOUBLE PRECISION RWORK( * ) COMPLEX*16 AP( * ), WORK( * ) PURPOSE ZTPCON estimates the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or the infinity-norm. The norm of A is computed and an estimate is obtained for norm(inv(A)), then the reciprocal of the condition number is computed as RCOND = 1 / ( norm(A) * norm(inv(A)) ). ARGUMENTS NORM (input) CHARACTER*1 Specifies whether the 1-norm condition number or the infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm. UPLO (input) CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular. DIAG (input) CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular. N (input) INTEGER The order of the matrix A. N >= 0. AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1. RCOND (output) DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(norm(A) * norm(inv(A))). WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value