Previous: dfloat Up: ../plot79_d.html First: dcosh
DOUBLE PRECISION FUNCTION DSINH (X) C$ (Hyperbolic Sine) C$ Return the hyperbolic sine of the DOUBLE PRECISION argument C$ X. The algorithm uses the host exponential function for C$ large abs(X), with care taken to prevent premature C$ overflow. For small abs(x), a 7-term polynomial expansion C$ generating results correct to about 23.89 digits, which is C$ adequate for double precision computation on computers for C$ which there are fewer than 80 bits in the mantissa. C$ C$ The polynomial coefficients are taken from table SINH 1987 C$ in J.F. Hart et al, "Computer Approximations", R.E. Krieger C$ Publishing Co., Malabar, FL, USA (1978). The ELEFUNT tests C$ of W.J. Cody, Jr. and W. Waite, "Software Manual for the C$ Elementary Functions", Prentice-Hall, Englewood Cliffs, NJ, C$ USA (1980) have been made on the DEC-20/60, with the C$ following results: C$ C$ abs(x) in 0 .. 1/2 - maximum relative error: 1.00 bits lost C$ - RMS relative error: 0.00 bits lost C$ abs(x) in 3 .. 88.03 - maximum relative error: 2.61 bits lost C$ - RMS relative error: 0.83 bits lost C$ (25-JUN-83)