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ABSTRACT

Algebra is one of the most fundamental
subjects in mathematics. It is usually the first
subject encountered by young
mathematicians on their paths to other
subjects. Many students fail to realize that
algebra is a beautiful area which is not only
interesting in its own right but also incredibly
useful as a language and tool for working in a
variety of other fields. In particular,
commutative ring theory is one of the
powerful tools used by algebraic geometers in
the study of modern geometric questions. In
this talk, I will introduce the basic objects of
study in commutative algebra, especially
focusing on rings of polynomials and their
geometric counterparts.



Question. Which of the following is a ring?

(a) The geometric object?
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(the intersection of the two surfaces)

(b) The algebraic object?

klz,y,2]/(z? + y2 — 22+ 1,2° + y2 + 0.222 — 1)

Answer. Both (a) and (b).



I. RINGS

In our careers as mathematicians, we have
come across many examples of number
systems. For example, we are more or less
familiar with

e The integers Z.

e The rational numbers Q.

e [ he real numbers R.

e The complex numbers C.

There are other examples which we may not
think of in the same way even though they
share similar characteristics:



e [ he set of polynomials of the form

anx”™ + an_lxn_l + -4+ ajx + ag with
an,...,aq in Z or Q or R or C.

f(x)
g(x)

f(x) and g(x) are polynomials.

e [ he set of rational functions where

e The set My,(Z) of n x n matrices with
entries in Z.

e The set of functions (continuous
functions, differentiable functions)
f R — R with point-wise addition and
multiplication.

e T he set of even integers.

What traits do these examples share?



Each is a ring: a set R with two binary
operations “4" and “.” defined on R
satisfying the following properties:

R1 (Associativity) (a+b)+c=a+ (b+ ¢)
and (a-b)-c=a-(b-¢) for all a,b,c € R.

R2 (Commutativity of Addition)
a+b=b+a for all a,b € R.

R3 (Distributivity) a-(b+c¢)=a-b4+a-c
and (a+b)-c=a-c+b-cforall a,b,c € R.

R4 (Additive Identity) There is O € R such
that a4+ 0=a =0+ a for all a € R.

R5 (Additive inverses) For every a € R
there exists b € R such that a 4+ b = 0.



In commutative ring theory, we restrict our
attention to commutative rings with identity,
that is, rings which also satisfy the following
properties.

C1l (Commutativity of Multiplication)
a-b=0>b-a for all a,b € R.

C2 (Multiplicative Identity) Thereis 1 € R
such thata-1=a=1-a for all a € R.

Example. The matrix ring M, (Z) has a
multiplicative identity

L= 170
00 --- 1

However, multiplication is not commutative
for n > 2.



Warning! We do not require that
multiplicative inverses exist in a ring. For
example, even though the number 2 is an

integer, the number 3 is not an integer.

Exercise. For n =2,3,..., find matrices
M,N € Mp(Z) such that M- N #= N - M.
(Hint: Start with n = 2.)

Exercise. Prove that the matrix ring M1(Z)
IS @ commutative ring with identity.

Exercise. Prove that the multiplication on
the ring of even integers is commutative.

Exercise. Prove that the ring of even
integers does not contain a multiplicative
identity.

Exercise. Of the other rings listed above,
which are commutative rings with identity?



Historical note. The term “ring"” was first
used by Dieudonné. Allegedly, he chose this
word to express the fact that the absence of
division in a ring is a fundamental defect;
hence, a ring has a hole.

II. POLYNOMIAL RINGS

Our first intuition about rings comes from Z.
However, this is too specific. Our perspective
will be broadened considerably by considering
rings of polynomials.

For the rest of this talk, let K be R or C.

Definition. A polynomial in z1,...,xn With
coefficients in K is a finite sum whose terms
are of the form az 1z52---z%n where a € K
and each ¢; is a nonnegative integer.



Example. Polynomials in z1,...,xg With
coefficients in R:

f=1+az1+2% - 2123
g=3+x1 — Sx%xg + V2zox3785 — wxz.rg

Polynomials with coefficients in C:

h= 4+ 1i)xr1 —ixaxs
k=44 3zg + (3 + wi)xs

We denote the set of polynomials in
xr1,...,Tn With coefficients in K as
Klz1,...,zn]. (We will often use the letters
x,y in place of x1,x»5.)

As with the polynomials in one variable,
Klzq1,...,zn] has the structure of a
commutative ring with identity.

The additive identity is the constant
polynomial O, and the multiplicative identity
IS the constant polynomial 1.



We add polynomials term-by-term, and we
multiply them by distributing and collecting
like terms—a long version of FOIL.

Example.
(2z+izy)+((1+i)z+3y?) = (3+14)z+iry+3y?

Example.

2z +y) - (¢ —zy + 2)
=2z-22—2z-2y+2z-z+y- 22 —y-zy+y-z
= 213 — 2:1:2y + 2xz + :1:2y — :cy2 + yz
= 223 — 22y + 222 — zy? + yz

Exercise. Write down two polynomials in
Clz, vy, z,w]. Now add them and multiply
them.



III. AFFINE SPACE AND
POLYNOMIALS AS FUNCTIONS

Definition. Given a positive integer n, we
define n-dimensional affine space as the set

K" ={(a1,...,an) 1 a1,... ,an € K}

Example. If K =R, then K1 = R! is the real
line. R? is the real plane (or the Cartesian
plane) consisting of all 2-vectors with real
entries. R3 is real 3-space, and so on.

With a polynomial f(x) in one variable, we
may substitute values for the variable. This
gives us a function f: K — K.

Example. If f(z) = 3z% — 52+ 1 € C[z], then
the function f: C — C is given by the rule
f(a) =3a*—=5a+ 1 for a € C. For example,
f(i1)=3(@)*=-5i4+1=3-5i+1=4—5i.



Often, we are interested in solving the
equation f(x) = 0, that is, in finding all
elements a € K such that f(a) = 0. The
solution set is a subset of K = K.

When we increase the number of variables
and consider polynomials

f(x1,...,zn) € Kl[z1,...,2n], there are n
variables to substitute for. This gives us a
function f: K" —» K.

Example. If f(z1,z2,23) = :U% — Tox3
considered in Clz1,zo, 3], then

£(1,2i,-3) = (1)% — (23)(—3) = 1 + 6.

Again, we will be interested in solving the
equation f(x1,...,zn) = 0. The solution set
IS a subset of K™.



Example. Let K = R and consider the

polynomial f(z,y) = 22+ y2 — 1. The solution
set of the equation z2 4+ y2 — 1 = 0 is exactly
the unit circle in R?

Y051

because the equation is equivalent to the
equation z2 + y2 =



Example. Let K = R still and consider the
polynomial g(z,y) = 22 4+ y2 4 1. There are
no solutions to the equation z2 +vy2+1=0
because this equation is equivalent to the
equation z2 4 y2 = —1 and the sum of the
squares of two real numbers is positive.
Notice how sensitive R is to subtle changes in
the polynomial. Just by changing the
constant term from —1 to 1 we change from
an infinite number of solutions to no
solutions.

Example. Let K = C this time and consider
the same polynomial g(z,y) =22+ y2+ 1. It
is straightforward to find solutions to this
equation, for example, (%i,0) and (£iv2,£1).
It is impossible for us to graph the solution
set in C2 because this corresponds to R4.

Exercise. Graph the solution set of the
equation y2 — z2(z 4+ 1) = 0 in R2. Can you
find any solutions in C2 which are not in R2?



IV. AFFINE VARIETIES: GEOMETRY
HELPS THE ALGEBRAIST

In college algebra we learned to solve linear
equations like 3z + 5y — 7 = 0. Then we
learned to solve systems of linear equations.

3z+5y—7z=1

2x —3y+62=2

—xr —4y —8z=4
Algebraically, we solve the system using
Gaussian elimination. Geometrically, the
solution set to the system is the set of points
where the graphs of the individual equations
Intersect.

Sometimes we want to know the solution set
exactly. Other times, however, we only care
about certain properties of the solution set.
Are there any solutions? If so, are there
finitely many or infinitely many? Inspection of
the graph often leads to more insight.






Definition. Let fq,..., fs be polynomials in
Klzq1,...,zn]. The affine variety determined
by f1,...,fs, denoted V(f1,...,fs), is the
subset of K™ consisting of all elements
(a1,...,an) € K™ such that

fi(at,...,an) = 0, i=1,...,s
In other words, V(f1,..., fs) is the zero locus
of the polynomials f1,..., fs.

Analogous to our system of linear equations,
V(f1,...,fs) is the set of points of K™ which
are in the intersection of the varieties

V(1) VI([fs).



Example. The set V(23 —y?) in R? is the
graph of the equation 23 — y? =

0.51

—0.51

It is called the cuspidal cubic due to the cusp
at the origin and the fact that the polynomial
defining it has degree 3.



Example. The set V(23 — 42,z —vy) in R? is
the intersection of the graphs of the

equations: z3 —y2 =0, z—y=0

0.5

—0.51

It is the intersection of the cuspidal cubic
with the line y = x. Solving this system by
substitution shows that the points (0,0) and
(1,1) are the only points in this set.



Example. The set V(a3 — y2,z —y3) in R? is
the intersection of the graphs of the
equations: z3 —4y2 =0, z—-y3=0

0.57

It is the intersection of the cuspidal cubic
with the cubic y3 = z. Again, we see that the
points (0,0) and (1,1) are the only points in
this set. Notice that this is the same variety
as in the previous example, even though the
equations are not the same.



When we consider the previous two examples
over C instead of over R, we find that the
first still has 2 points, while the second has 8
points. Thus, over different fields, varieties
defined by the same equations can have
different numbers of points. (We knew this
from the example 22 4 y2 = —1.)

The complex numbers are very special for a
number of reasons. The first reason is known
as the Fundamental Theorem of Algebra.

Theorem. Any nonconstant polynomial with
coefficients in C has a zero in C.

We shall see other reasons later.

Fundamental Question. Given two sets of

polynomials f1,...,fs and g1,...,g¢ In
Klz1,...,zn], when are the varieties

V(f17°" 7f8) and V(gla'“ 7gt) equal?



Exercise. Find the 8 points of
V(z3 —y2,z—y3) in C2. (Hint: One new point
has y-coordinate y = cos(2F) + isin(2F).)

Exercise. Find the sets V(z3 — y2,z — y?) and
V(23 —y2, 22 — y2) in R? and in C2.

V. IDEALS: ALGEBRA HELPS THE
GEOMETER

Let us return to Earth for a moment and
consider the ring of integers. Let 27 denote
the set of even integers, that is,

2Z={2n:n €7}

As we noted previously, 27 is a commutative
ring without identity. This is essentially the
statement that

(even) + (even) = (even).



We also know that any number multiplied by
an even number yields an even number. This
follows from the fact that

(number)(even) = (m)(2n) = 2mn = even

Similarly, if r is any integer, we let
rZo = {rn :n € 7Z}.

Each of these sets is closed under addition,
that is, if you add any two multiples of r you
get another multiple of r. Furthermore, if we
multiply any integer by a multiple of r, we get
another multiple of r. Finally, since O = r - 0,
we see that 0 is in rZ. This says that rZ is an
ideal of Z. More generally, we have



Definition. Let R be a commutative ring
with identity and let I be a subset of R. Then
I is an ideal in R if the following are satisfied.

I1 0 el

I2 For alla,be I, a+0bel.

I3 Foralla€el andce R, c-a €.

Notice that I3 says that if we multiply
something inside the ideal by anything,
whether from inside or outside the ideal, the
result is inside the ideal.

The term “ideal” comes from number theory.
When number theorists were attempting to
generalize the ring of integers to general
rings, they looked for “ideal numbers” which
were subsets of rings which had the same
properties as the sets rZ.



Example. Let C(R) denote the ring of
continuous functions f : R — R with pointwise
addition and multiplication. This is a
commutative ring with identity. (Why?) Let
I denote the set of continuous functions

f :R — R such that f(0) = 0. We verify that
this is an ideal.

I1 The constant function 0O is continuous and
0(0) = 0.

I2 If f and g are continuous functions such
that f(0) = ¢g(0) = 0, then the function
f + g is continuous and

(f+9)(0)=f(0)+9g(0)=04+0=0

I3 If f and h are continuous functions and
f(0) = 0, then the product function h- f
Is continuous and

(h-f)(0) =h(0)-f(0) =h(0)-0=0



Example. Let fq,...,fs polynomials in
K[:Ul,. .. ,:Un]. Let V = V(fl,. .. ,fs) be the
variety determined by the f;, and let I(V)
denote the set of polynomials

f € K[z1,...,zn] such that

f(a1,...,an) =0 for all (ay,...,an) €V

This is similar to the previous example, as we
are considering the set of all (polynomial)
functions which vanish on a certain set. As in
the previous example, I(V) is an ideal of
Klz1,...,zn]. Furthermore, each f;, € I(V).



Example. Let fq,..., fs be polynomials in
Klz1,...,zn) and let {f1,..., fs) denote the
set of sums of the form

hifi+--+ hsfs

with hi,... ,hs € K[x1,... ,zn] This is called
the ideal generated by f1,..., fs. It is, in fact,
an ideal in K[z1,...,zn] and contains the f;.
Furthermore, it is the smallest such ideal.

Exercise. Prove that the sets I(V) and
(fi,...,fs) from the above examples are
ideals in K[zq,...,zn] Which contain

fi,.---,fs. Prove that (fq,...,fs) CI(V).

Example. Let I be any ideal in K[zq,...,zn]
and let v/I denote the set of polynomials
f € K[z1,...,zn] such that

f™ ¢ I for some positive integer m

VI is called the radical of I. It is also an
ideal, and it contains I.



Bonus Exercise. Prove that +/T is an ideal
containing 1.

The preceding three examples are of the
most important algebraic tools in classical

algebraic geometry.

Fundamental Question. Given two sets of

polynomials f1,...,fs and g1,...,g¢ in
K|x1,...,zn], when are the ideals (f1,..., fs)
and {(g1,...,g+ equal?

Fundamental Question. Given two sets of

polynomials f1,...,fs and g1,...,g¢ in
Klz1,...,zn], when are the ideals

I(V(f1,---,fs)) and I(V(gy1,... ,9¢)) equal?

It turns out that the answers to these
questions is deeply related to our first
Fundamental Question.



Theorem. Given two sets of polynomials
f1,...,fsand g1,...,g¢ in K[x1,...,xn], if the

ideals (f1,...,fs) and (g1,...,9¢) are equal
then the varieties V(f1,..., fs) and
V(g1,...,9+) are equal.

Note that the converse is not true. As we
noted previously, the varieties

V(z3 —y2,z—vy) and V(a3 —y2, 2z — y3) in R?
are equal. However, with a little work, we can
check that the ideals (z3 — y2,z — y) and

(z3 —y?,x — y3) are not equal. In general over
R, the ideals generated by two sets of
polynomials can be quite different. This can
not happen over C, however.

Theorem. (Hilbert's Nullstellensatz) Given a
set of polynomials f1,..., fs in Clzq,...,zn]

I(V(f1,- s f8)) = (f1s-e o fs)




Corollary. Given two sets of polynomials

fla"' 7f8 and gil,--- 3t in C[xla"' 735'n], the
varieties V(f1,...,fs) and V(g1,...,g¢) are

equal if and only if the ideals \/(fl,... , fs)
and \/<gl,... ,g¢) are equal.

Exercise. Prove that the ideals (z3 —y2,z —y)
and (z3 — y2,z — y3) are not equal in K[z, y].

VI. PERSPECTIVES: HISTORICAL
AND OTHERWISE

From this discussion, one might be tempted
to think that algebra preceded geometry
historically. This is, of course, not the case,
at least in western mathematics. The
ancients were geometers, describing their
objects of study in terms of points and
distances.



It was only later, due to the influence of the
Arabic and other "eastern” cultures, that
Descartes devised Cartesian geometry. This is
the system which allows us to describe the
geometric objects studied by the Greeks
(conic sections, surfaces, etc.) as solutions to
equations or systems of equations. (The term
“algebra” actually comes from the Arabic
word “Al-jabr’” meaning ‘“‘the reduction”.) A
similar relationship is held by number theory
and algebra.

These subjects are now so interwoven that it
IS hard to separate them. The algebraist uses
geometric and number theoretic methods and
intuition to prove algebraic results. The
geometer borrows from the algebraists and
the number theorists (as well as from the
physicists) to understand geometry. And so
on.



Introductory References.

Cox, Little and O’'Shea, Ideals, Varieties, and
Algorithmes.

Reid, M., Undergraduate Algebraic Geometry.

Advanced References.

Atiyah and MacDonald, Introduction to
Commutative Algebra.

Eisenbud, D., Commutative Algebra with a
View Toward Algebraic Geometry.

Hartshorne, R., Algebraic Geometry.

Matsumura, H., Commutative Ring T heory.

Shafarevich, 1., Basic Algebraic Geometry.



