TOPOLOGY

ADAM GULLY AND DYLAN ZWICK

Abstract

These notes are based on a set of lectures given by Dan Margalit,
Lars Lauder, and Mladen Bestvina on, respectively, March 2nd, 9th,
and 16th of 2007 at the University of Utah. The notes were tran-
scribed and prepared by Adam Gully and Dylan Zwick.

The subject of the talks was, broadly speaking, topology. As with
any area of mathematics, it is essentially impossible to give a concise
definition that is exact and yet covers the entire field, but it is suf-
ficient to say that topology is the branch of mathematics concerned
with space and shape. Topology tends to view large classes of seem-
ingly disparate objects as related or even the same, in hopes of deter-
mining the essential characteristics that fundamentally define these
shapes and differentiate them from others.

As an example, a sphere is homeomorphic to a cube, so in many
branches of topology these shapes would be considered the same.
Both would be distinct from, say, a torus, to which neither the sphere
nor cube are homeomorphic. There is even an old joke that topolo-
gists treat all homeomorphic objects as the same, and so a topologist
can’t tell a coffee cup from a doughnut during breakfast.

These talks all address an area of topology related to the presen-
ter’s area of research. While not necessarily what the presenter is
researching per se, each lecture gives a taste of the ideas within the
field.

These lectures all address topics in topology with a highly alge-
braic flavor with problems that can be tackled utilizing ideas from
algebra, especially group theory. This particular area of topology
research is especially active at the University of Utah.
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The Mapping Class Group

Notes based on a lecture by Prof. Dan Margalit given
on March 2nd, 2007

The mapping class group is an interesting, complex, and power-
ful structure that is built by studying the types of curves you can
produce on a surface, the relations between these curves, and the

structures formed by these relations.
Surfaces and Curves

A surface is a 2-dimensional manifold, and a curve on this surface
is an injective continuous map from S* to the surface.

We refer to a curve as being essential if it does not bound a disk or
an annulus. In other words, a curve is essential if we can’t shrink it
down to a point or slide it to the surface’s boundary.

Note finally that we consider two curves to be the same if we can
homotope one curve to the other. That is, if we can stretch, wiggle,
and slide one curve without breaking it and turn it into the other.
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For example, the curves g, b, and ¢ below are all homotopic, and
so are treated as the same curve.

The Curve Complex

The first step in the creation of the mapping class group for a sur-
face is the construction of the curve complex for that surface. The
curve complex for a surface is a graph with the identifications:

e Vertices - Essential curves on the surface. (Isotopy classes of
simple closed curves that are not homotopic to a point or a
section of the boundary.)

e Edges - An edge is drawn between two vertices if the two
curves represented by those vertices do not intersect.
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For example in the surface below the curves a and b intersect,
so there is no edge between them in the curve complex, while the
curves 2 and ¢ do not intersect, and so there is an edge between them
in the curve complex.

Surfaces and Curves Curve Complex
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Note the importance here of the concept that two curves are the
same if you can homotope one to the other. For example, the two
curves on the left below are disjoint because curve e is homotopic
to curve ¢’ and curve ¢’ is disjoint from curve d. Note in the earlier
example above there is no way to homotope curve # so that it does
not intersect curve b, so it is correct to claim they intersect.

Surfaces and Curves Curve Complex

Some Properties of the Curve Complex

Note - When discussing these properties we assume we are dealing
with a surface that has a non-trivial curve complex. The curve com-
plex of the sphere, for example, is empty. On the sphere any closed
curve is homotopic to a point, and so there are no non-essential
curves. The properties enumerated below all apply to, for example,
the curve complex of the genus-2 torus, and also to “more compli-
cated” surfaces.

(1) There are an infinite number of vertices in the curve com-
plex.

We can get a good idea for why this is by looking at the
essential curves on the genus-2 torus. We can start with an
essential curve such as curve a; below, and create from it an-
other essential curve, a, below, by wrapping it around the
torus twice. We can create another by wrapping, it around the
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torus three times (curve a3 below) and continuing this process
we can create an infinite number of essential curves. Each of
these curves is a vertex on the curve complex. Note also that
as they all intersect these vertices are mutually disjoint.
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(2) The curve complex is not locally finite.

What this means is that every vertex in the curve complex
has an infinite number of associated edges. This can be seen
by examining the curve b below and noting that it is disjoint
not just from curve a, (also given below for clarity) but also
from all curves a, discussed above. So, there are an infinite
number of edges connected to the vertex for curve b, and a
similar fact applies to every vertex in the complex.

(3) The dimension of the curve complex on a closed, orientable
boundaryless surface is 3g-4

If the curve complex has two connected vertices, then we
can view that as forming a 1-dimensional structure (the line
connecting the two vertices). If we have three mutually
connected vertices (corresponding to three mutually disjoint
curves) then we can view this as forming a 2-dimensional
structure (the area formed by the triangle whose corners are
the three vertices). If we have 4 mutually connected vertices
we can view these as the edges of a 3-dimensional tetrahe-
dron, and so on. So, the dimension of the curve complex is
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one less than the maximum number of disjoint curves you
can draw on the surface at the same time.

For the genus-2 torus we see that we can draw 3 mutually
disjoint curves, and so the dimension of its curve complex is
2:
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For the genus-3 torus we can draw 6 mutually disjoint curves,
and so the dimension of its curve complexis 5.

Note that if we cut along the disjoint curves of the genus-3
torus above, we get four surfaces that look like this:

Topologists call this surface a “pair of pants”, and the set of
disjoint curves for the genus-3 torus above is called its “pants
decomposition.” Note that, like with the sphere, we cannot
draw any essential curves on a pair of pants. All curves on a
pair of pants can either be shrunk to a point or moved to the

boundary.



10 ADAM GULLY AND DYLAN ZWICK

(4) The Curve Complex is Connected

This means that for any vertex in the curve complex there
is a path connecting it to any other vertex.

(5) The Curve Complex has Infinite Diameter

The distance between any two vertices is the minimum
length path connecting them. So, for example, two connected
vertices are distance 1 apart. The curves a and b below are
distance 1 apart. The intersecting curves a4 and ¢ below are
distance 2 apart, as they can be connected through the curve
b, from which both # and ¢ are disjoint.

Surface and Curves Curve Complex

Having an infinite diamater means that for any positive in-
teger N there exist vertices in the curve complex that are a
distance N apart.
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(6) The Distance Between Any Two Vertices is Computable

It is, in theory, possible to calculate the distance between
any two vertices, although in practice using current tech-
niques this is essentially impossible for distances that are
even moderately large.

The basic idea is that for any positive inter N there are only
a finite number of vertices a distance N apart, and we can
calculate an upper bound for the distance between any two
vertices. So, in theory, we can figure out this upper bound,
and then just check all the paths with distance less than this
upper bound. There are a finite number of such paths, so we
will eventually figure out the smallest distance between the

two vertices.

Definition of the Mapping Class Group

The mapping class group for a surface S is defined as:

Homeo(S)

MCG(S) =
[CG(S) isotopy

In words, this means that the mapping class group of a surface
is the group created by looking at homeomorphisms of the surface,
and treating two surfaces as being the same if they are isotopic.

Properties of the Mapping Class Group

(1) The Mapping Class Group Corresponds to Automorphisms
of the Curve Complex

Itis an amazing fact that is not obvious at all, but there is an
exact correspondence between the elements in the mapping
class group and the automorphisms of the curve complex.
Any element in the mapping class group represents an au-
tomorphism of the curve complex, and any automorphism of
the curve complex has a corresponding element in the map-
ping class group.
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(2) The Mapping Class Group is Generated by Dehn Twists

A Dehn twist corresponds to cutting the surface along a cir-
cle, and then rotating one of the resulting pieces one full turn,
while leaving the other piece the same, and finally reconnect-
ing the two pieces.

For example, on the genus-1 torus below if we perform a
Dehn twist along the circle b the steps are as follows, and
while the resulting surface is still a genus-1 torus, the curve a
has been changed into a’.

e
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Thurston’s Game

As a final, somewhat whimsical, example of a mapping class group
we can take a look at a “game.” In this game we start with a plane
with three holes, and draw a circle around two adjacent holes. The
game is played by exchanging adjacent holes through rotations. As
we perform these rotations, our initially simple curve gets more and
more complicated.
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The amazing thing is that the plane with three holes removed is a
surface, and each of these rotations represent a different element in
the surface’s mapping class group.

The Algebra of the Torus and
the Farey Graph

Notes based on a lecture by Graduate Student Lars
Lauder given on March 9th, 2007

Here we explore in a little more depth the algebraic properties
of homeomorphisms, particularly homeomorphisms of the genus 2
torus (the one holed doughnut, referred to as the torus for the rest of
the notes on this lecture), and how these algebraic properties can be
used in the study of curves on surfaces. We then use these ideas to
construct a very interesting metric space using curves on a torus and
properties about their intersections.

The Torus and its Homeomorphisms

There are two main ways in which mathematicians view and draw
the torus. The first is the standard drawing of a doughnut, and the
second is the drawing of a square with sides identified as equivalent.
We can imagine constructing this square by cutting along the torus
along the two closed curves, C; and C» below.
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Now, we can tile R? with these square representations of the torus
and view each of these squares as representing the same torus. Math-
ematically, this would be taking the quotient of R? by Z”, written as
R2 /22,
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Let us take a look at curves on the torus. For example, thj curve
on the torus below can be represented on the “square” torus on the
right, but the curve can also be represented is a more elegant and
intuitive (as well as useful) manner by using the tiled plane.
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Note as with the first lecture we treat simple, closed curves as the
same if one can be homotoped to the other. Each simple, closed curve
on the torus can be homotoped so that it passes through a given
point, which we will denote (0,0). Each simple, closed curve in the
plane can be represented by a pair of integers {p, q) where led(p, q) =
1. Here p represents the number of times the curve wraps around the
doughtnut before it gets back to (0, 0), while g represents the number
of times the curve wraps around the doughnut hole before it gets
back to (0. 0). Some examples are given below:
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Now, we will look as some algebraic concepts, and how these con-
cepts relate to our study of simple, closed curves on the torus.

The matrix group GL,(Z) is the group of 2 x 2 matrices with de-
terminant equal to =1:

a b a.boe,deZ
GL2AZ) = ( ¢ d) ad ~ be = £1.

Note that this matrix maps points in Z* to points in Z?, and we
can view its action on the tiled plane as a homeomorphism of the
torus. (Note the fact that it maps Z? to itself is critical because in
our tiled plane each point on the integer lattice represents the same
pointon the torus, and our homeomorphism is a function, so it better
map one point to only one point!} Of particular interest is what this
group does to simple closed curves on the torus. In fact, this map
takes simple closed curves to simple closed curves!

We can restrict this group to the subgroup SL,{Z), which is the
group of 2 x 2 matrices with determinant equal to 1:

a b a.be.de?
SLa(Z) = ( ¢ d ) ad — bc = 1.

This group’s action on the torus also maps simple, closed curves
to simple, closed curves, but it does so in a way that preserves ori-
entation. (A curve starting out at (0, 0) with a positive slope maps to
another curve with a positive slope, and vice versa.)

A particular example of a matrix in SL»(Z) is ( i (f ) - Now, we

can view the curve (; below as the vector ( é ) and the vector (s

below as the vector ( g ) .




13 ADAM GULLY AND DYLAN ZWICK

The action of the matrix on these vectors is:

10 1y (1
1 1 0/ 1
1o0Y/0\ [0
11 1) 1)
When viewed graphically we note that this matrix represents the
Dehn twist about Cy:

Which is the same result we got with the Dehn twist described in
the earlier lecture.
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The Farey Graph

As a further exploration into these simple, closed curves on the
torus we will construct a metric space whose points are these curves.

Note first of all that two disjoint simple, closed curves on the torus
must be homotopic. (The only disjoint simple, closed curves we can
draw on the torus are either two homotopies of C mentioned above,
or two homotopies of Cs. Any other simple, closed curves must in-
tersect.)

However, some simple, closed curves on the torus intersect each
other once, and some intersect more than once. As mentioned earlier,
any simple, closed curve on the surface can be homotoped so that
it crosses through the point (0,0). The simple, closed curves that
intersect only once are those curves that only intersect at the point

(0,0).

If we represent two simple, closed curves with the relatively prime
pair of integers (p. ¢} and (p', ¢'}. We can form a 2 x 2 matrix from this

pair Of curves like:
( r p, )
4 q,

The claim is that the curves (p, ¢) and {p'. ¢') intersect only once if
and only if the corresponding matrix is in G'Ly(Z).

Proof

Necessity:

Suppose the curves (p. q) and (p', ¢’) are such that the correspond-
ing matrix is in GL,(Z). Specifically, this means that (pg' —v'q) = =1
Now suppose we have a point (z,y) on the line through the origin
with slope £, and another point (', / ) on the line through the origin
with slope g and that the two points differ by an integer in each
term. In other words 2’ = x +rand y =y + s where r, s € Z.
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Graphically we can view (z.y) and (2', y') below, where the plane
here is interpreted as the tiled plane with copies of the torus:

7
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/

The point (0,0) is the common point through which both lines
(p.q) and (¢, ¢') cross. We can write y and y as functions of =z and
a, respectively, just using the standard slope-intercept line equation
y = (g);r and y' = (%)x’. Using these relations and the earlier rela-
tions, ©’ = x +r and y = ¢ + s, after some algebra we get:

p'ar + sqq’
I = S,
pq =Py

Given (pq — p'q) = =1 we have that z, and therefore also 2’ are
integers. Noting that x is divisible by ¢ we have that y is also an
integer and therefore so is 3. So, these points must occur on the
integer lattice in R?, and each of these points maps to the same point
on the torus. So, the curves only intersect at one point.

Sufficiency:

Suppose the curves (p, ¢) and (p', ¢’} only intersect once. Note that
if we define y, /. v/ in terms of = as above and pick r and s such that



TOPOLOGY 21

rp’ + s¢’ = 1 (which the Euclidean algorithm says we can do given
led(p'. ¢) = 1) then if we choose x using our earlier equation:
par -+ sqq’
T = ———,
i
we recover a pair of points (. y) on the first curve and (x', ') on the

second curve that differ by a pair of integers. Given the curves only
intersect once at (0,0}, the points (z,y) {(and therefore (z',/)) must

be integers. Now, as y = (E):r,, given p and g are relatively prime, it
must be that glz. Given thqis fact and our choosing of r and s such
that rp/ + s¢’ = 1 we get that:

x 1

¢ pd-va
And as gz we know that 13 is an integer, and therefore (p¢’ — p'q) =

+1. Q.ED.

Now, this fact allows us to construct the Farey graph. We define
the vertices of the Farey graph as consisting of all simple, closed
curves on the torus, and we connect two vertices if the correspond-
ing curves only intersect once. In other words, the curves (p, ¢) and

b
(¢.¢) are connected if and only if ( ’Z ‘Z, ) € GLy(Z).

A subset of the vertices and edges of this graph that provides a
clear and telling way to view the graph is drawn below. Note that
the curve (1, 0) is represented as the point at cc.
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There is much non-trivial and interesting mathematics that can be
done on the Farey graph. A very elementary property of the graph
that can be more or less deduced immediately is that the graph is
not locally finite. Each vertex has an infinite number of connecting
edges. Another elementary property is that it is connected, so each
point can be reached by another through a series of edges. Now,
we can turn this graph into a metric space by defining the distance
between two curves (; and €, as the minimum number of edges on
the graph that must be traversed to get from the vertex representing
(' to the vertex representing C'.

Mathematics related to and arising from the Farey graph, of which
this is just the tip of the iceberg, is one area of mathematical research
that is pursued in the study of geometric group theory here at the
University of Utah.

Quasi-Homomorphisms and
Words

Notes based on a lecture by Prof. Mladen Bestvina
given on March 16th, 2007

In topology, a homeomorphism is a special transformation between
topological spaces that is a structure preserving map with respect to
topological properties. These properties on the most basic of levels
essentially-allow for the stretching and shrinking of space as long as
you do not tear a whole in the space or close a whole. An example of
this would be transforming a coffee cup into a doughnut. They are
homeomorphic.

Definition

Let G be a group. Then a quasi-homeomorphism on 7 is a function
f: G — Rsuch that

flay) — flz) — Fly)l <6 <o

SUPg yea
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Quasi means “having a resemblance to something.” 50 a quasi-
homeomorphism can be thought of as a topological map that is sim-
ilar to a homeomorphism. For instance, as explained in detail in the
example below, any function within a bounded distance of a homeo-
morphism is a quasi-homeomophism. Below are some more detailed
examples to demonstrate this definition.

Example

Any quasi-homeomorphism on Z can be obtained by some func-
tion within a bounded distance of a homeomorphism.

Proof

First, we note that a quasi-homeomorphism on Z is a function
mapping the integers to real numbers:

f:Z—-R
Using this mapping we can define a sequence {a, } as follows:

F2%)
ar

Qp =

Now, we can use the definition of a quasi-homeomorphism to
show that this sequence is Cauchy:

_ Ef(?’l%"j')fzf(zn)g &
]{3»11+1 - a'n.l = | Frt i : § o

Which given ¢ is constant this difference goes to 0 as n — oc. This

means {a, } is Cauchy.
Now, as R is complete, this implies a, — ¢ € K,

By subtracting ax from f(z) we may assume a = 0. Now,

‘arz! < |an - a‘n—ﬁ—ll + %afnJrl - Gm—é—?l +... 5 2néa:—1 + 72‘?5@' .= %%ﬁ&

Therefore, |f(2")] < 4, and simiilarly |f(k2")] < & for all &, n.
QE.D.

Thus, it is observed that any quasi-homeomorphism on Z is in-
deed obtained by a function within a bounded distance of a home-
omorphism. However, it is not true that any function within a
bounded distance of a homeomorphism is the only way to obtain
a quasi-homeomophism. Quasi-homeomorphisms can be obtained
other ways. Below is an example of this phenomenon.



24 ADAM GULLY AND DYLAN ZWICK

Example

When G = F, =< a,b >, then there are quasi-homeomorphisms
that are not within bounded distance of a homeomorphism. Choose
w = ab.

If we make the definition f,, : F; — R, then we might have some-
thing like f,(aabab *a 'baba) = 1. Further, a neat way to reduce a
word in topology is like this:

fu(reducedword) =
number{occurance of ab) — number{occurance of b rat).

Therefore, f,, is a quasi—homeomorphism because we can reduce
the word and find that | f,(zy) — fu{z) — fuly)] < 3.

Similarly, f,(a") = fu(a...a) =0, f.{b") =0, and f,.((ab)") = n.

Open Question

Using just these relatively simple definitions we already run across
an open question in geometric group theory. This open question in-
volves the dimensionality of the set of quasi-homeomorphisms of
the group when we take its quotient by a subgroup.

Define:
X - The set of all quasi-homeomorphisms of G.

Y - The set of all quasi-homeomorphisms of &G within a bounded
distance of a homeomorphism.

For a given group G we can define a space QH(G) = X/Y, which
is the set of all quasi-homeomorphisms of (7, where we consider two
such homeomorphisms the same if they differ by a quasi-homeomor-
phism within bounded distance of a homeomorphism.

For example, we proved earlier that for the group Z all quasi-
homeomorphisms are within a bounded distance of a homeomor-
phism, and so this quotient group is just the trivial map to the iden-
tity, which has dimension 0. On the other hand for our word group
F, we investigated, the quotient is infinite dimensional.

So, in our two examples the quotient is either trivial or infinite
dimensional. Are there any intermediate examples between these
two extremes? This is actually still an open question, and is related
to questions that are being researched here at the University of Utah.



