
LOCAL COMOLOGY, LOCAL DUALITY AND BASIC NOTIONS

OF TIGHT CLOSURE THEORY

Abstract. This lectures were given by Florian Enescu at the mini-course on
classical problems in commutative algebra held at University of Utah, June
2004. The references listed were used extensively in preparing these notes and
the author makes no claim of originality. Moreover, he encourages the reader
to consult these references for more details and many more results that had to
be omitted due to time constraints.

This version has been typed and prepared by Bahman Engheta.

1. Injective modules, essential extensions, and local cohomology

Throughout, let R be a commutative Noetherian ring.

Definition. An R-module I is called injective if given any R-module monomor-
phism f : N → M , every homomorphism u : N → I can be extended to a homo-
morphism g : M → I, i.e. g f = u.

0 N M

I

w wfuu
���� g

Or equivalently, if the functor Hom( , I) is exact.

Example. Q and Q/Z are injective Z-modules.

Definition. An R-module M is called divisible if for every m ∈M and M -regular
element r ∈ R, there is an m′ ∈M such that m = rm′.

Exercise. An injective R-module is divisible. The converse holds if R is a principal
ideal domain.

A note on existence: If R → S is a ring homomorphism and I is an injective
R-module, then HomR(S, I) is an injective S-module. [The S-module structure is
given by s · ϕ( ) := ϕ(s ).] In particular, HomZ(R,Q) is an injective R-module
and any R-module can be embedded in an injective R-module.

Definition. An injective map M
h→ N is called an essential extension if one of the

following equivalent conditions holds:

a) h(M) ∩N ′ 6= 0 ∀ 0 6= N ′ ⊆ N.
b) ∀ 0 6= n ∈ N ∃ r ∈ R such that 0 6= rn ∈ h(M).

c) ∀ N ϕ→ Q, if ϕ ◦ h is injective, then ϕ is injective.
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Example. 1) If R is a domain and Q(R) its fraction field, then R ⊆ Q(R) is
an essential extension.

2) Let M be a submodule of N . By Zorn’s lemma there is a maximal sub-
module N ′ ⊆ N containing M such that M ⊂ N ′ is an essential extension.

3) Let (R,m, k) be a local ring and N an R-module such that every ele-
ment of N is annihilated by some power of the maximal ideal m. Let
Soc(N) := AnnN (m) denote the socle of N . Then Soc(N) ⊆ N is an
essential extension. (See exercise below.)

Note: The socle of a module N over a local ring (R,m, k) is a k-vector space.

Exercise. An R-module N is Artinian if and only if Soc(N) is finite dimensional
(as a k-vector space) and Soc(N) ⊆ N is essential.

Definition. If M ⊆ N is an essential extension such that N has no proper essential
extension, then M ⊆ N is called a maximal essential extension.

Proposition. a) An R-module I is injective if and only if it has no proper
essential extension.

b) Let M be an R-module and I and injective R-module containing M . Then
any maximal essential extension of M contained in I is a maximal essential
extension. In particular, it is injective and thus a direct summand of I.

c) If M ⊆ I and M ⊆ I ′ are two maximal essential extensions, then there is
an isomorphism I ∼= I ′ that fixes M .

Definition. A maximal essential extension of an R-module M is called an injective
hull of M , denoted ER(M).

Definition. Let M be an R-module. Set I−1 := M and I0 := ER(M). Inductively

define In := ER(In−1

/im(In−2)). Then the acyclic complexI : 0→ I0 → I1 → · · · → In → · · ·
is called an injective resolution of M , where the maps are given by the composition

In−1 → In−1

/im(In−2) →֒ ER(In−1

/im(In−2)).

Conversely, an acyclic complex I of injective R-modules is a minimal injective
resolution of M if

• M = ker(I0 → I1),
• I0 = ER(M),
• In = ER(im(In−1 → In)).

I-torsion: Given an ideal I ⊆ R and an R-module M , set ΓI(M) :=
⋃

n(0 :M In).
Then ΓI( ) defines a covariant functor and for a homomorphism f : M → N , ΓI(f)
is given by the restriction f

∣

∣

ΓI(M)
.

Proposition. ΓI( ) is a left exact functor.
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Proof. Let

0→ L
f→M

g→ N → 0

be a short exact sequence. We want to show that

0→ ΓI(L)
ΓI(f)−→ ΓI(M)

ΓI(g)−→ ΓI(N)

is an exact sequence.

Exactness at ΓI(L): ΓI(f) is injective as it is the restriction of the injective map
f . Exactness at ΓI(M): It is clear that im(ΓI(f)) ⊆ ker(ΓI(g)). Conversely, let
m ∈ ker(ΓI(g)). Then m ∈ ker(g) and therefore m = f(l) for some l ∈ L. It
remains to show that l ∈ ΓI(L). As m ∈ ΓI(M), we have Ikm = 0 for some integer
k. Then f(Ikl) = Ikf(l) = Ikm = 0. As f is injective, Ikl = 0 and l ∈ ΓI(L). �
Exercise. ΓI = ΓJ if and only if

√
I =
√
J .

Definition. The i-th local cohomology functorHi
I( ) is defined as the right derived

functor of ΓI( ).

More precisely, given an R-module M , let I be an injective resolution of M :I : 0→ I0 d0

→ I1 d1

→ · · · → In dn

→ · · ·
Apply ΓI( ) to I and obtain the complex:

ΓI(I) : 0→ ΓI(I
0)→ ΓI(I

1)→ · · · → ΓI(I
n)→ · · ·

Then set H0
I ( ) := ΓI( ) and Hi

I(M) := ker(ΓI(d
i))/ im(ΓI(d

i−1)) for i > 0. Note
that Hi

I( ) is a covariant functor.

Proposition. 1) If 0→ L→M → N → 0 is a short exact sequence, then we
have an induced long exact sequence

0→ H0
I (L)→ H0

I (M)→ H0
I (N)→

H1
I (L)→ H1

I (M)→ H1
I (N)→ · · ·

2) Given a commutative diagram with exact rows:

0 L M N 0

0 L′ M ′ N ′ 0

w wu wu wuw w w w
then we have the following commutative diagram with exact rows:

· · · Hi
I(M) Hi

I(N) Hi+1
I (L) · · ·

· · · Hi
I(M

′) Hi
I(N

′) Hi+1
I (L′) · · ·

w wu wu wuw w w w
3)
√
I =
√
J if and only if Hi

I( ) = Hi
J ( ).
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A note on localization: Let S ⊆ R be a multiplicatively closed set. Then
S−1 ΓI(M) = ΓS−1I(S

−1M) and the same holds for the higher local cohomology
modules.

Clearly, if E is an injective R-module, then Hi
I(E) = 0 for i > 0.

2. Local cohomology

An alternate way of constructing the local cohomology modules: Consider the
module HomR(R/In,M) ∼= (0 :M In). Now, if n > m, then one has a natural map
R/In → R/Im, forming an inverse system. Applying HomR( ,M), we get a direct
system of maps:

lim−→n HomR(R/In,M) ∼=
⋃

n

(0 :M In) = ΓI(M).

As one might guess (or hope), it is also the case that

lim−→n ExtiR(R/In,M) ∼= Hi
I(M).

This follows from the theory of negative strongly connected functors – see [R].

Definition. Let R,R′ be commutative rings. A sequence of covariant functors
{T i}i>0 : R-modules → R′-modules is said to be negative (strongly) connected if

(i) Any short exact sequence 0 → L → M → N → 0 induces a long exact
sequence

0→ T 0(L)→ T 0(M)→ T 0(N)→
T 1(L)→ T 1(M)→ T 1(N)→ · · ·

(ii) For any commutative diagram with exact rows

0 L M N 0

0 L′ M ′ N ′ 0

w wu wu wuw w w w
there is a chain map between the long exact sequences given in (i).

Theorem. Let ψ0 : T 0 → U0 be a natural equivalence, where {T i}i>0, {U i}i>0 are
strongly connected. If T i(I) = U i(I) = 0 for all i > 0 and injective modules I, then
there is a natural equivalence of functors ψ = {ψi}i>0 : {T i}i → {U i}i.

The above theorem implies that lim−→n Exti
R(R/In,M) ∼= Hi

I(M).

Remark. i) One can replace the sequence of {In} by any decreasing sequence
of ideals {Jt} which are cofinal with {In}, i.e. ∀ t ∃n such that In ⊆ Jt

and ∀n ∃ t such that Jt ⊆ In.
ii) Every element of Hi

I(M) is killed by some power of I, as every m ∈ H i
I(M)

is the image of some Exti
R(R/In,M) which is killed by In.
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iii) For any x ∈ R, the homomorphism M
·x−→ M induces a homomorphism

Hi
I(M)

·x−→ Hi
I(M).

Proposition. Let M be a finitely generated R-module and I ⊆ R an ideal. Then
IM = M ⇐⇒ Hi

I(M) = 0 ∀ i. If IM 6= M , then min{i | H i
I(M) 6= 0} =

depthI(M).

Proof. IM = M ⇐⇒ ItM = M ∀ t. So It + Ann(M) = R, as otherwise
It + Ann(M) ⊆ m for some m ∈ max-Spec(R). Since It + Ann(M) annihilates

ExtiR(R/It,M), we have ExtiR(R/It,M) = 0 and therefore Hi
I(M) = 0.

It suffices to assume now that IM 6= M . Set d := depthI(M) and let x1, . . . , xd

be a maximalM -regular sequence in I. We show by induction on d that H i
I(M) = 0

for i < d and Hd
I (M) 6= 0.

If d = 0, that is, if depthI(M) = 0, then there is an 0 6= m ∈ M killed by I.
So m ∈ H0

I (M) 6= 0. Now let d > 1 and set x := x1. Consider the short exact
sequence

0→M
·x→M →M/xM → 0

and the induced long exact sequence

· · · → Hi−1
I (M/xM)→ Hi

I(M)
·x→ Hi

I(M)→ · · ·

If i < d, then Hi−1
I (M/xM) = 0 by induction hypothesis and x is a nonzerodivisor

on Hi
I(M). As all elements of Hi

I(M) are killed by some power of I, we conclude
that Hi

I(M) = 0.

It remains to show that Hd
I (M) 6= 0. This follows from the induction hypothesis

and the long exact sequence

· · · ·x→ Hd−1
I (M)→ Hd−1

I (M/xM)→ Hd
I (M)

·x→ · · ·

which yield 0 6= Hd−1
I (M/xM) →֒ Hd

I (M). �
The Koszul interpretation

Let K ,L be two complexes of R-modules with differentials d′, d′′, respectively.
Define the complex M := K ⊗ L via M k :=

⊕

i+j=k K i ⊗ Lj with differential

d(ai⊗bj) := d′ai⊗bj+(−1)iai⊗d′′bj where ai ∈ Ki, bj ∈ Lj . If K (1) , . . . ,K (n) are n

complexes, then K (1)⊗· · ·⊗K (n) is defined inductively as (K (1)⊗· · ·⊗K (n−1) )⊗K (n) .

To any x ∈ R one can associate a complex K•(x;R) : 0→ R
·x→ R→ 0. Given a

sequence x = x1, . . . , xn of elements in R, we define the Koszul complexK•(x;R) :=
⊗n

i=1K•(xi;R). For an R-module M we define K•(x;M) := K•(x;R)⊗M . In co-
homological notation we write K•(x;M) = K•(x;R)⊗RM ∼= HomR(K•(x;R),M).

Discussion: Let x ∈ R and M an R-module. Consider the complex

M
·x→M

·x→M → · · ·
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and set N := ker(M →Mx) and M ′ := M/N . Note that N = H0
xR(M). Then

lim←−(M
·x→M

·x→M → · · · ) ∼=
lim←−(M ′ ·x→M ′ ·x→M ′ → · · · ) =

lim←−(M ′ ⊆ x−1M ′ ⊆ · · · ⊆ x−tM ′ ⊆ · · · ) ∼= M ′
x
∼= Mx.

Notation: Whenever x = x1, . . . , xn denotes a sequence of elements in R, we will
denote by xt the sequence of the individual powers xt

1, . . . , x
t
n

For x ∈ R we have a chain map of complexes K•(xt;R)→ K•(xt+1;R) via the
commutative diagram

K•(xt;R) : 0 R R 0

K•(xt+1;R) : 0 R R 0

w w·xtu id wu ·xw w·xt+1 w (1)

By tensoring we get K•(xt;M) → K•(xt+1;M). Take the direct limit and de-
note the resulting complex by K•(x∞;M). We can look at Hi(K•(x∞;M)) =
lim−→tH

i(K•(xt;M)) for which we simply write Hi(x∞;M).

Theorem. If I = (x1, . . . , xn) and M is an R-module, then there is a canonical
isomorphism Hi(x∞;M) ∼= Hi

I(M).

Observation: Say x = x1, . . . , xn is an R-regular sequence. Then it is known
that K•(x

t;R) is a projective resolution of R/xtR. Apply HomR( ,M) and note
that on the one hand K•(xt;M) gives H•(xt;M) while on the other hand we get
Ext•R(R/xt;M). Now take the direct limit: Hi(x∞;M) ∼= Hi

I(M).

The Cěch complex and a detailed look at K•(x∞;M)

Let x ∈ R. Then K0(x∞;R) = R and K1(x∞;R) = Rx. (Recall diagram (1).)
So K•(x∞;R) =

⊗n
i=1(0→ R→ Rxi

→ 0), that is,

Kj(x∞;R) =
⊕

|S|=j

Rx(S)

where S ⊆ {1, . . . , n} and x(S) =
∏

i∈S

xi. Similarly, Kj(x∞;M) =
⊕

|S|=j Mx(S).

The map Rx(S) → Rx(T ), where |T | = |S| + 1, is the zero map unless S ⊂ T , in
which case it is the localization map times (−1)a where a is the number of elements
in S preceding the element in T \ S.

Exercise. Let x, y, z ∈ R. Write down the maps in

0→ R→ Rx ⊕Ry ⊕Rz → Rxy ⊕Ryz ⊕Rzx → Rxyz → 0.

Corollary. If I ⊆ R is an ideal which can be generated by n elements up to radical,
then Hi

I(R) = 0 for i > n.

Remark. The modules occurring in K•(x∞;R) are flat.
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3. Properties of local cohomology

Proposition. 1) Let R→ S be a ring homomorphism of Noetherian rings, I
an ideal of R, and M an S-module. Then H i

I(M) ∼= Hi
IS(M) as S-modules.

2) Let Λ be a directed set and {Mλ}λ∈Λ a direct system of R-modules. Then
lim−→λH

i
I(Mλ) ∼= Hi

I(lim−→λMλ).

3) Is S is flat over R, then H i
I(M)⊗R S = Hi

IS(M ⊗R S).
4) If m ⊆ R is a maximal ideal, then H im(M) ∼= HimRm(Mm).

5) If (R,m) is local, then Him(M) ∼= HimR̂
(R̂ ⊗R M) which is isomorphic to

HimR̂
(M̂) if M is finitely generated.

Proposition. Let I ⊆ R be an ideal which, up to radical, is generated by a regular
sequence of length n. Then Hi

I(M) ∼= Torn−i(M,Hn
I (R)) for i 6 n.

Proof. If i < depthI(R) = n, then Hi
I(R) = 0. Therefore K•(x∞;R) gives a flat

resolution of Hn
I (R), numbered backwards:

· · · → Kn−1 → Kn → Hn
I (R) = Kn/ im(dn−1)→ 0.

On the one hand TorR
n−i(M,Hn

I (R)) = Hi(K•(x∞;R)⊗R M) by definition of Tor.

On the other hand, by the preceding theorem, Hi(K•(x∞;R)⊗RM) ∼= Hi
I(M). �

Corollary. Let (R,m, k) be a Cohen-Macaulay local ring of dimension n. Then

Him(M) ∼= TorR
n−i(M,Hnm(R)).

Proof. The maximal ideal m is the radical of an ideal generated by a(ny) regular
sequence of length n. �
Grothendieck’s Theorems

1. Vanishing Theorem: Let I ⊆ R be an ideal and M an R-module. Then
Hi

I(M) = 0 for i > dim(R).

2. Non-Vanishing Theorem: Let (R,m, k) be a local ring and M a finitely
generated R-module. Then Hnm(M) 6= 0 for n = dim(M).

Proof of 1. We may assume that R is local with maximal ideal m. Further, as M
is the direct limit of its finitely generated submodules, we may also assume that M
is finitely generated. Set S := R/Ann(M) so that n := dim(M) = dim(S). The
maximal ideal of S is generated by n elements up to radical, so H imS(M) = 0 for
i > n.

We want to show that Hi
I(M) = 0 for i > dim(M). By induction, we assume

the theorem is true for all finitely generated modules of dimension less than n. We
leave the case n = 0 as an exercise and assume n > 0.

Note that if a module is I-torsion, then all its higher local cohomology modules
vanish. So, as ΓI(M) is I-torsion, without loss of generality ΓI(M) 6= M . Also,
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the long exact sequence induced by

0→ ΓI(M)→M → M/ΓI(M) → 0

yields that Hi
I(M) ∼= Hi

I(M/ΓI(M)) for all i > 0. Hence, by passing to M/ΓI(M),
we may assume that M 6= 0 is I-torsionfree. It follows that I contains an M -regular
element r. (Otherwise I is contained in the union of the associated primes of M ,
and by prime avoidance I is contained in one of those primes which is of the form
(0 :R m) for some 0 6= m ∈M . That is Im = 0 — a contradiction.)

Let i > n and let t be an integer. Consider the short exact sequence

0→M
·rt

→M → M/rtM → 0

and the induced long exact sequence

· · · → Hi−1
I (M/rtM)→ Hi

I(M)
·rt

→ Hi
I(M)→ · · ·

Since dim(M/rtM) < dim(M), Hi−1
I (M/rtM) = 0 by induction hypothesis and rt

is a nonzerodivisor on Hi
I(M). But any element of Hi

I(M) is killed by a power of
I. As r ∈ I, that implies Hi

I(M) = 0. �
Remark. If dim(R) = n and M is an R-module, then Hn

I (M) ∼= M ⊗R Hn
I (R).

This follows from the fact that Hnm(−) is a right exact functor, a consequence of
Grothedieck’s Vanishing Theorem

4. Local duality

Let (R,m, k) be a local ring and E = ER(k) the injective hull of k and let
∆R( ) := HomR( , E) denote the Matlis duality functor. Assume R is the homo-
morphic image of a Gorenstein local ring R′ of dimension n′. Then for all i and for
all finitely generated R-modules M one has

Him(M) ∼= HomR(Extn′−i
R′ (M,R′), E)

= ∆R(Extn′−i
R′ (M,R′)).

In particular, if R is Gorenstein, setting R′ = M = R and i = n yields Hnm(R) ∼= E.

The Cohen-Macaulay case

Let (R,m, k) be a Cohen-Macaulay local ring of dimension n. Recall that the type
of M is defined as dimk Soc(M/xM) = dimk HomR(k,M/xM) = dimk Extn

R(k,M)
where x is a system of parameters for M . The type of M is independent of the
choice of the system of parameters chosen for M .

Definition. A canonical module for R, denoted here by ωR, is a maximal Cohen-
Macaulay module of type 1.

Proposition. • A ring admits a canonical module if and only if it is the
homomorphic image of a Gorenstein local ring.
• Any two canonical modules are (non-canonically) isomorphic.
• EndR(ωR) ∼= R.
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Theorem. Let R be a Cohen-Macaulay local ring of dimension n which is the
homomorphic image of a Gorenstein local ring R′ of dimension n′. Then ωR

∼=
Extn

′−n
R′ (R,R′). In particular, if R is Gorenstein, then ωR

∼= R.

In general, if R is a domain, then rank(ωR) = 1 and ωR can be embedded in R
as an ideal J such that ht(J) = 1 or J = R.

Theorem. Let R be a Cohen-Macaulay local ring which admits a canonical module
ωR. Then for all i and for all finitely generated R-modules M one has

Hn−im (M) ∼= ∆R(Exti
R(M,ωR)).

Proof. First case is i = 0. In this case we use the local duality theorem stated for
images of Gorenstein rings:

Let R′ Gorenstein surjects on R. Using the notations introduced above

Hn−im (M) ∼= HomR(Extn′−n+i
R (M,R′), E).

Now take M = R, i = 0 and see that we get

Hnm(M) ∼= HomR(Extn′−n
R (R,R′), E) = HomR(ωR, E).

But, Hnm(−) ∼= −⊗R H
nm(R) ∼= −⊗R HomR(ωR, E).

We can then apply the following canonical isomorphism:

M ⊗HomR(I, J) ∼= HomR(HomR(M, I), J),

where M is finitely generated and J is injective over R. Use this for M , I = ωR

and J = E and therefore obtain the case i = 0

The case i > 0 follows through from homological algebra considerations by in-
terpreting both sides as positively strongly connected functors on the category of
finitely generated R-modules. �
Lemma. Let (R,m, k) be a local ring of dimension n and I an ideal of R. Then I
is generated by n elements up to radical.

Proof. Set A0 := {P ∈ Min(R) | P 6⊇ I}. By prime avoidance, I 6⊆ ⋃

P∈A0
P . Let

x1 ∈ I such that x1 /∈ P for any P ∈ A0. Assume we have a sequence of elements
x1, . . . , xk ∈ I such that all primes of height 6 k − 1 that contain (x1, . . . , xk) also
contain I.

If P is a prime of height at most k containing (x1, . . . , xk), but not containing I,
then P is minimal over (x1, . . . , xk). If not, then there is a prime Q ( P minimal
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over (x1, . . . , xk). As ht(P ) 6 k, we must have ht(Q) 6 k − 1. Then, by the above
assumption, Q contains I and therefore so does P . That is,

Ak := {P ∈ Spec(R) | ht(P ) 6 k, P ⊇ (x1, . . . , xk), P 6⊇ I} ⊆ Min(x1, . . . , xk)

and therefore Ak is a finite set of primes. So we can choose xk+1 ∈ I such that
xk+1 /∈ P for any P ∈ Ak. This process has to terminate at k = n with An = ?
and

√

(x1, . . . , xn) =
√
I. �

Remark. This lemma allows us to give an alternate proof of the Vanishing Theorem
of Grothendieck:

Up to radical I is generated by n elements. So, we can assume that we are in the
case where I is generated by exactly n elements. Using the Koszul interpretation of
the local cohomology we can see now that if i > n, the Koszul cocomplex is trivial
and hence all local cohomology modules Hi

I(M) must vanish.

5. Basic notions of tight closure theory

Let R be a Noetherian ring of characteristic p and let q denote a power of p,
i.e. q = pe for some integer e. We use the notation R◦ for the complement of
the minimal primes of R, i.e. R◦ := R \ ⋃

P∈Min(R) P . For an ideal I ⊆ R, we

denote by I [q] the ideal (rq | r ∈ I). It is easily seen that if I = (r1, . . . , rn), then
I [q] = (rq

1, . . . , r
q
n).

Let F : R→ R denote the Frobenius homomorphism sending r 7→ rp and denote
by F e : R → R its e-th iteration sending r 7→ rq. This gives R a new R-algebra
structure which we denote by R(e). One can think of R(e) as a right R-algebra.

Definition. The tight closure of an ideal I ⊆ R, written I∗, is the set of all elements
x ∈ R for which ∃ c ∈ R◦ such that cxq ∈ I [q] for q >> 0.

Some basic properties: I∗ is an ideal which itself is tightly closed, i.e. (I∗)∗ = I∗.

Furthermore, the following inclusions hold: I ⊆ I∗ ⊆ Ī ⊆
√
I. (Ī denotes the

integral closure of I which will be defined later in the text.)

Some motivation for the notion of tight closure:

• It captures the essence of some arguments that appear in the proofs of some
homological conjectures and delivers it in a unified way.

• It naturally leads to new classes of rings in characteristic p > 0 (or in character-
istic 0) that are important, for instance, in view of birational geometry: F -regular,
F -rational, F -pure, F -injective.

Definition. A Noetherian ring R is said to be weakly F -regular if every ideal of
R is tightly closed. If for every multiplicatively closed set W , the ring W−1R is
weakly F -regular, then R is said to be F -regular.

Proposition. 1. If I ⊆ J , then I∗ ⊆ J∗.
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2. The intersection of tightly closed ideals is again tightly closed:
Iλ = I∗λ =⇒ (

⋂

λ Iλ)∗ =
⋂

λ Iλ.
3. (I ∩ J)∗ ⊆ I∗ ∩ J∗.
4. (I + J)∗ = (I∗ + J∗)∗

Furthermore, 0∗ =
√

0 and I∗ = π−1 [(IRred)∗] where π is the natural projection

π : R → Rred = R/
√

0. Also, if I is tightly closed, then the quotient I : J is as
well, for all ideals J .

Proposition. 1. If R is reduced, or if ht(I) > 0, then x ∈ I∗ iff ∃ c ∈ R◦

such that cxq ∈ I [q] ∀ q.
2. x ∈ I∗ iff x̄ ∈

(

I+P/P
)∗ ∀P ∈Min(R).

Proof of 1. Let ht(I) > 0. We have I∗ ⊆ (x | x ∈ I∗ ∩R◦) ∪⋃

P∈Min P . As I 6⊆ P
for any minimal prime P , prime avoidance yields that I∗ = (x | x ∈ I∗ ∩R◦).

We can assume that x ∈ I∗ ∩ R◦. So ∃ c ∈ R◦ such that cxq ∈ I [q] ∀q > q0. Set
c′ := cxq0 , that is, c′xq = cxq0+q. If q > q0, then c′xq ∈ I [q]. And if q < q0, then
cxq0+q ∈ I [q0] ⊆ I [q].

If R is reduced, then set S := (R◦)−1R =
∏n

i=1Ki where Ki are fields. So IS

is generated by an idempotent and IS = I [q]S ∀ q. We have x ∈ I∗, so ∃ c ∈ R◦

such that cxq ∈ I [q] ∀q > q0. Mapping this element to S we get xq ∈ I [q]S ∀ q > q0.
As S is a product of fields, F e is flat. So x ∈ IS = I [q]S and for every q there
exists a cq ∈ R◦ such that cqx ∈ I [q]. Setting c′ := c ·∏q′<q0

cq′ we get c′xq =

c ·∏q′<q0
cq′ xq ∈ I [q] ∀ q. �

Theorem. If R is regular, then I = I∗ for all ideals I ⊆ R. In particular, R is
F -regular.

Proof. Note that since R is regular, F is flat. Assume I 6= I∗ for some I and let
x ∈ I∗ \ I. Note that (I : x) 6= R, so (I : x) ⊆ m ∈ max-Spec(R). After localizing
at m we may assume that R is local. There exists a c ∈ R◦ such that cxq ∈ I [q] ∀ q.
But then c ∈ ⋂

q(I
[q] : xq)

flatness
=

⋂

q(I : x)[q] ⊆ ⋂

q mq = 0 — a contradiction. �
If R → S is flat, I ⊆ R is an ideal, and x ∈ R, then (I :R x)S = (IS :S x). To

see this, consider the following short exact sequence

0→ R/I:x
·x→ R/I → R/(I,x)R → 0,

and tensor it with S:

0→ S/(I:x)S
·x→ S/IS → S/(I,x)S → 0.

Apply the above to R
F e

→ R, i.e. S = R via F e. Then (I :R x)S = (I :R x)[q]R
and

(IS :S x) = {c ∈ S | x · c ∈ IS}
= {c ∈ R | cxq ∈ I [q]} = I [q] :R xq.
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Some additional properties of tight closure and its connections to integral closure:

Definition. An element x ∈ R is said to be in the integral closure of an ideal
I ⊆ R, written x ∈ Ī, if ∃ ai ∈ In−i such that xn + an−1x

n−1 + · · ·+ a0 = 0.

In terms of valuations, an element x is in the integral closure of an ideal I if and
only if h(x) ∈ IV for all homomorphisms h : R→ V where V is a DVR and ker(h)
is contained in a minimal prime of R. Yet another characterization: x ∈ Ī if and
only if ∃ c ∈ R◦ such that cxn ∈ In for n >> 0. In particular, I∗ ⊆ Ī.
Theorem (Briançon-Skoda). Let R be a Noetherian ring of characteristic p and
I ⊆ R an n-generated ideal. Then In ⊆ I∗. In particular, of R is regular, then
In ⊆ I.

Proof. If x ∈ In, then there exists a c ∈ R◦ such that cxm ∈ Imn for all m >> 0.
Say I = (x1, . . . , xn). Then an element in Imn is a sum of terms xa1

1 · · ·xan

n where
∑n

i=1 ai > mn and so at least one ai > m. Now if m = q, then cxq ∈ I [q] and
x ∈ I∗. �
Example. Let R = k[[x,y,z]]/(x3+y3+z3) where k is a field of characteristic p 6= 3 and

let I be the ideal generated by the system of parameters (y, z). Claim: x2 ∈ I∗.

If I 6= I∗, then I∗/I ∩ Soc(R/I) 6= 0. Note that Soc(R/I) = Soc(k[[x]]/(x3)) is
generated by x2. We want to find an element c ∈ R◦ such that cx2q ∈ (y, z)[q] for
all q >> 0. In the following we show that c can be taken to be x2. As p 6= 3, the
remainder of 2q modulo 3 is either 1 or 2. Write 2q = 3k+i with i = 1 or 2. Adding
2 to both sides we can write 2q + 2 = 3k + 3 + ǫ with ǫ = 0 or 1. So we have

x2x2q = xǫx3k+3

= xǫ(x3)k+1 = xǫ(−y3 − z3)k+1.

After expansion of the last term, a general monomial will contain the factor y3iz3j

with i + j = k + 1. If 3i 6 q − 1 and 3j 6 q − 1, then 3(k + 1) 6 2q − 2 — a
contradiction to the fact that 2q − 2 6 3k. So xǫ(−y3 − z3)k+1 ⊆ (yq, zq)R. X

We observe that in the above example x ∈ Ī. Namely, y3+z3 ∈ I3 and x satisfies
the integral dependency relation x3 + (y3 + z3) = 0 (in R). By the same token, it

is easily seen that x2 ∈ I2. Indeed, (x2)3 − (y3 + z3)2 = 0 and (y3 + z3)2 ∈ (I3)2 =

(I2)3. So, as I is 2-generated, the Briançon-Skoda Theorem delivers x2 ∈ I2 ⊆ I∗.

Contractions: If R ⊆ S is a module finite extension of domains, then for an ideal
I ⊆ R, (IS)∗ ∩R ⊆ I∗. In particular, IS ∩R ⊆ I∗.

Persistence: Let R
φ→ S be a homomorphism of Noetherian rings, I ⊆ R an ideal,

and x ∈ I∗. If R is a localization of a finitely generated algebra over an excellent
ring, or Rred = R/

√
R is F -finite (i.e. F : Rred → Rred is finite), then φ(x) ∈ (IS)∗.

Recall that elements x1, . . . , xt of a Noetherian ring R are called parameters if
they are part of a system of parameters in RP for any prime P ⊇ (x1, . . . , xt).
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Exercise. x1, . . . , xt are parameters if and only if ht(x1, . . . , xt) = t or ∞.

Colon-Capturing:

Theorem. Let (R,m) be a local equidimensional ring which is the homomorphic
image of a Cohen-Macaulay local ring. Then

(a) (x1, . . . , xt−1) : xt ⊆ (x1, . . . , xt−1)
∗

(b) (xn
1 , . . . , x

n
t ) : (x1 · · ·xt)

n−1 ⊆ (x1, . . . , xt)
∗

Theorem (Monomial Conjecture). Let (R,m) be a local ring containing a field.
Let x1, . . . , xd be a system of parameters in R. Then (x1 · · ·xd)

n−1 /∈ (xn
1 , . . . , x

n
d )

for all n.

Sketch of proof. First reduce to the case where R is complete. Then, by part (b)
of the previous theorem, 1 ∈ (x1, . . . , xd)

∗. Write this out explicitly to obtain a
contradiction. �

Let us look at the Frobenius action the highest local cohomology of R. Let
x1, . . . , xd be a system of parameters for R. We can compute the Hnm(R) as the
direct limit of R/(xq

1, . . . , x
q
d0 where the transition maps are given by multplication

by (x1 · · ·xd)q−1.

Hence, each element of Hnm(R) can be seen as the class η = [a + (xq
1, . . . , x

q
d)].

The Frobenius action is then simply F (η) = [ap + xqp
1 , . . . , x

qp
d )].

Using local cohomology, one can show that the monomial conjecture holds in
general if and only if the image of 1 under the composition

R→ R/(x1, . . . , xd)→ Hdm(R)

is non-zero. However, in characteristic p > 0, any element of the local cohomology
module is a multiple of a Frobenius iteration of this element:

indeed, η = [a+ (xq
1, . . . , x

q
d)] = a[1 + (xq

1, . . . , x
q
d)] = aF e([1 + (xq

1, . . . , x
q
d)]).

So, in characteristic p, the monomial conjecture is equivalent to Hdm(R) 6= 0.

References

[BS] M. P. Brodmann, R. Y. Sharp, Local cohomology, Cambdrige University Press, 1998.
[BH] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambdrige University Press, 1994.
[H] M. Hochster, Local cohomology, lecture notes, University of Michigan.
[Hu] C. Huneke, Tight closure and its applications, CBMS, 1996.
[Hu2] C. Huneke, Tight closure, parameter ideals, and geometry, Six lectures on commutative

algebra (Bellaterra, 1996), 187–239, Progr. Math., 166, Birkhauser, Basel, 1998.
[R] J.J. Rotman, An introduction to homological algebra. Pure and Applied Mathematics 85.

Academic Press, 1979.


