AUSLANDER-BUCHSBAUM FORMULA

This formula is an "effective instrument for the computation of the depth of a module", according to Bruns-Herzog, Cohen-Macaulay Rings.

THEOREM: (Auslander-Buchsbaum) Let (A, \mathfrak{m}) be a Noetherian local ring, and $M \neq 0$ a finite A-module. If proj dim $M < \infty$, then

$$
proj\ dim M + depth M = depth A.
$$

Recall the following definitions:

.

Definition: An A -module P is called **projective** if given any diagram of A-module homomorphisms:

with bottom row exact, there exists an A-module homomorphism $h: P \to N$ such that $g \circ h = f$.

NOTE: Recall that over a Noetherian local ring, $flat = projective = free$.

Definition: An A-module M has **projective dimension** $\leq n$ ($pd(M) \leq n$) if there is a projective resolution

$$
0 \to P_n \to P_1 \to \cdots \to P_0 \to M \to 0
$$

If no such finite resolution exists, then $pd(M)$ is defined to be ∞ ; otherwise, if n is the least such integer, define $pd(M) = n$.

We need some preliminary definitions and results before proving the Auslander-Buchsbaum formula.

Definition: Let (A, \mathfrak{m}, k) be a Noetherian local ring and let M be a finite A-module. An complex $L_1: \ldots L_i \stackrel{d_i}{\to} L_{i-1} \stackrel{d_{i-1}}{\to} \cdots \stackrel{d_2}{\to} L_1 \stackrel{d_1}{\to} L_0 \stackrel{\epsilon}{\to} M \to 0$ is called a **minimal free resolution** of M if it satisfies the three conditions

(1) each L_i is a finite free A-module, (2) in the complex $L \otimes k$, $d_i = 0$, or in other words, $d_iL_i \subset \mathfrak{m} L_{i-1}$ for all i, and $(3) \bar{\epsilon}: L_0 \otimes k \to M \otimes k$ is an isomorphism.

REMARK: Note that a minimal free resolution of a finite A-module M can be constructed as follows: Let x_1, \ldots, x_{β_0} be a minimal system of generators of M. Define $\phi_0: A^{\beta_0} \to M$ by $\phi_0(e_i) = x_i$, where e_1, \ldots, e_{β_0} is the canonical basis of A^{β_0} . Let β_1 be the number of minimal generators of Ker(ϕ_0). In a similar way, define an epimorphism $A^{\beta_1} \to \text{Ker}(\phi_0)$. Then map $\phi_1 : A^{\beta_1} \to$ A^{β_0} via the composition $A^{\beta_1} \to \text{Ker}(\phi_0) \to A^{\beta_0}$. Continue in this way.

NOTE 1: Any two minimal free resolutions of M are isomorphic as complexes (which means that there is a chain map between the two complexes which is degree-wise an isomorphism)

NOTE 2: The number β_i is called the *i*-th Betti number.

PROPOSITION: Let (A, \mathfrak{m}, k) be a Noetherian local ring, and M a finite A-module. Then

$$
pd(M) = sup\{i : Tor_i^A(k, M) \neq 0\}.
$$

REMARK: Of course, if $pd(M) = n$, then $Tor_i^A(N, M) = 0$ for all $i > n$ and for any A-module N; i.e., $Tor_i^A(-, M)$ vanishes for $i > n$. However, in order to conclude that $pd(M) = n$, it suffices to show that these Tor's vanish when $N = k$.

PROOF

Recall that $pd(M)$ is the minimum of lengths of projective resolutions of M. Also, recall that $Tor_i^A(k,M) = H_i(k \otimes P)$, where P is a projective resolution of M. Suppose $pd(M) = n$. Because the definition of Tor is independent of the projective resolution chosen, we may assume that the length of P is n. Then $H_i(k \otimes P) = 0$ for $i > n$ since the complex P has only zeroes after the *n*-th place; i.e., $\text{Tor}_i^A(k, M) = 0$ for $i > n$. Thus, $pd(M) \geq sup\{i : Tor_i^{A}(k, M) \neq 0\}$. We need to show that $Tor_n^{A}(k, M) \neq 0$.

Suppose that $F: 0 \to F_n \stackrel{d_n}{\to} F_{n-1} \stackrel{d_{i-1}}{\to} \cdots \stackrel{d_2}{\to} F_1 \stackrel{d_1}{\to} F_0$ is a free resolution of

M. If F is minimal, then the maps d_i in the complex $k \otimes F$ are all zero, by definition. Thus,

$$
\operatorname{Tor}_i^A(k,M) = \ker(\overline{d}_i)/\operatorname{im}(\overline{d}_{i+1}) = k \otimes F_i
$$

since $\overline{d}_i = 0 \Rightarrow \ker(\overline{d}_i) = k \otimes F_i$ and $\overline{d}_{i+1} = 0 \Rightarrow \text{im}(\overline{d}_{i+1}) = 0$. But k and F_i finitely-generated $\Rightarrow k \otimes F_i = 0 \Leftrightarrow F_i = 0$. Since $F_n \neq 0$, $k \otimes F_n \neq 0$, and hence $\text{Tor}_n^A(k, M) \neq 0$. Thus, $pd(M) = sup\{i : \text{Tor}_i^A(k, M) \neq 0\}.$

PROPOSITION: Let (A, \mathfrak{m}) be a Noetherian local ring, and M a finite Amodule. If $x \in \mathfrak{m}$ is A-regular and M-regular, then $pd_A(M) = pd_{A/(x)}(M/xM)$.

PROOF

Choose an augmented minimal free resolution F of M . Since x is A - and M regular, $F \otimes A/(x)$ is exact. Therefore, it is a free resolution of M/xM over $A/(x)$. Recall that $\text{Tor}_{i}^{A/(x)}(k, M/xM) = \text{Tor}_{i}^{A}(k, M)$ for all $i \geq 0$. (The requirements for this are that x is \overrightarrow{A} - and M-regular and that x kills k.) Therefore $pd_{A/(x)}(M/xM) = sup\{i : Tor_i^{A/(x)}(k, M/xM) = sup\{i : Tor_i^{A}(k, M) \neq i\}$ 0 } = $pd_A(M)$.

PROOF OF AUSLANDER-BUCHSBAUM FORMULA

IDEA: Induct on $\operatorname{depth}(A)$.

By hypothesis, $pd(M)$ is finite; say $pd(M) = n$. Thus, M has a minimal free resolution:

$$
F_1: 0 \to F_i \xrightarrow{d_n} F_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{\epsilon} M \to 0
$$

Suppose depth $A = 0$. Then $\mathfrak{m} \in \text{Ass}(A) \Rightarrow$ there exists a short exact sequence $0 \to A/\mathfrak{m} \to A \to C \to 0$. From this we get a long exact sequence:

Now $\text{Tor}_i^A(k,M) = 0, \forall i \geq n$, so in particular, $\text{Tor}_{n+1}^A(C,M) \cong \text{Tor}_n^A(k,M) \neq$ 0. This is a contradiction unless $n = 0$, since $\text{Tor}_{n+1}^A(-, M)$ vanishes beyond *n*. Thus, $Tor_1^A(k,M) = 0 \Rightarrow M$ is projective, which means that M is free over A, since projective $=$ free over a Noetherian local ring. Thus,

$$
0 + \operatorname{depth}(M) = \operatorname{depth}(A),
$$

showing the formula holds in this case.

Next, let depth $A > 0$. If depth $M > 0$, then $\mathfrak{m} \notin \text{Ass}(A)$ and $\mathfrak{m} \notin \text{Ass}(M)$. Therefore, we can find an $x \in \mathfrak{m}$ such that x is non-zero divisor on both A and M. Then depth $_{A/(x)}(A/(x)) =$ depth $A-1$, depth $_{A/(x)}(M/xM) =$ depth $M-1$, and $pd_{A/(x)}(M/xM) = pd_{A}(M)$. Therefore, by induction on depth A, $pd_{A/(x)}(M/xM)$ + depth $_{A/(x)}(M/xM)$ = depth $_{A/(x)}(A/(x))$, and consequently, $pd_A(M)$ + depth $_A(M)$ = depth $_A(A)$. Therefore, we need only consider the case depth $M = 0$. Take the short exact sequence

$$
0 \to K \to A^t \to M \to 0.
$$

Then $pd_A(K) = pd_A(M) - 1$ and depth $(K) = 1$. (This follows from the fact that depth $K \ge \min\{\text{depth } A^t, \text{depth } M + 1\} = 1$ and $0 = \text{depth } M \ge$ min{depth K – 1, depth A^t } = depth $K - 1 \Rightarrow$ depth $K \le 1$; thus, depth $K = 1$.) We have proven above the case where depth $K > 0$. Thus, $pd_A(K)$ + depth $A(K)$ = depth $A \Rightarrow pd_A(M) - 1$ + depth $A(M) + 1$ = depth A.

Example: A free module F is projective, so $pd(F) = 0$. By the Auslander-Buchsbaum formula, depth $F =$ depth A.

Example: Consider a Noetherian local ring (A, \mathfrak{m}, k) . Let x be an A-regular element. The short exact sequence

$$
0 \to A \xrightarrow{\cdot x} A \to A/(x) \to 0
$$

shows that $pd(A/(x)) = 1$. Thus, depth $A/(x) =$ depth $A-1$.

Example: Consider the ring $A = k[[X_1, \ldots, X_n]]$. Then $A/(X_1, \ldots, X_i)$ has depth $n - i$; therefore, $pd(A/(X_1, \ldots, X_i)) = i$. (This is a way to construct rings with projective dimension n, for any $n \in \mathbb{N}$.

Example: Let $A = k[[X, Y]]/(X^2, XY)$. Then $\mathfrak{m} = (x, y)$ is annihilator of x, so $\mathfrak{m} \in \text{Ass}(A)$. Consequently, $A/\mathfrak{m} \hookrightarrow A$, which implies that $\text{Hom}_A(k, A) \neq$ 0, or inf{*i*: $\mathrm{Ext}_{A}^{i}(k, A) \neq 0$ } = 0; i.e., depth $A = 0$. Set $M = A/(x) \cong k[[Y]]$. Then M is a regular local ring of dimension one. Thus, depth $M = 1$. By the formula, we see that M can not have finite projective dimension.

Next is an interlude on regular local rings. Let (A, \mathfrak{m}, k) be a Noetherian local ring.

Definition: Recall that a **system of parameters** of A is a sequence of elements $a_1, \ldots, a_r \in \mathfrak{m}$ which generate an \mathfrak{m} -primary ideal. If the elements generate m itself, then a_1, \ldots, a_r are called a **regular system of parame**ters.

Definition: A regular local ring is one in which the maximal ideal is generated by a regular system of parameters.

REMARK 1: Recall that a regular local ring is always a domain.

REAMRK 2: As with CM and Gorenstein rings, if a ring is not local, then to say it is regular means that the localization at every prime is a regular local ring.

THEOREM: (Auslander-Buchsbaum-Serr) The following conditions are equivalent for a Noetherian local ring A:

- (a) A is regular
- (b) all f.g. A-modules have finite projective dimension
- (c) the residue field, k , of A has finite projective dimension

As with Cohen-Macaulay and Gorenstein rings, the class of regular rings is closed under the usual operations:

THEOREM: (Serre) Let A be a regular local ring and \mathfrak{P} a prime ideal. Then $A_{\mathfrak{B}}$ is again regular.

THEOREM: Let A be a Noetherian local ring. Then

(a) A if regular \Leftrightarrow \hat{A} is regular

(b) If A is regular, then R/I is regular Left rightarrow I is an ideal generated by a subset of a regular system of parameters.

(c) A regular implies that $A[X_1, \ldots, X_n]$ and $A[[X_1, \ldots, X_n]]$ are regular.

Definition: A Noetherian local ring A is a **complete intersection** (or c.i.) if the completion \tilde{A} is a quotient of a complete regular local ring R by an ideal generated by an R-sequence.

REMARK: regular \subset c.i. \subset Gorenstein \subset CM

Example: (Matsumura Exercise 21.3) If k is field, then $A = k[[X, Y, Z]]/(x^2 Y^2, Y^2, Z^2, XY, YZ, XZ$ is Gorenstein but not a complete intersection.

Exercise: (Suggested by Jan) Let $R = \mathbb{C}[[X, Y, Z]]/(X^2, Y^2, Z^2)$. Find all ideals I such that R/I is Gorenstein, but not a complete intersection.

Exercise: (Suggested by Paul) Show how to compute depth using the Auslander-Buchsbaum formula.