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1 Examples

A unilateral problem

−u′′ = λ(u + u3), t ∈ (0, π),

subject to the unilateral constraints



















0 ≤ u(0), 0 ≤ u(π)

u′(0) ≤ 0 ≤ u′(π)

u(0)u′(0) = 0 = u(π)u′(π).

Dirichlet boundary conditions:

u(0) = 0 = u(π),

where, however λ must be restricted so that the second

of the unilateral conditions hold, i.e.

u′(0) < 0 < u′(π).

Thus, for example, the problem may not have any

solutions u, with u(t) > 0, t ∈ (0, π), nor any

solutions u with u(t) > 0 for t in a neighborhood of 0
and u(t) < 0 for t in a neighborhood of π.

Bifurcation points

λ = n2, n = 1, 3, · · ·

1-1



Neumann boundary conditions:

u′(0) = 0 = u′(π),

where, however λ must be restricted so that the first of

the unilateral conditions hold, i.e.

u(0), u(π) > 0.

Bifurcation points

λ = n2, n = 0, 2, 4, · · ·

Mixed Dirichlet and Neumann boundary conditions:

u(0) = 0 = u′(π),

where λ must be restricted so that the first and the

second of the unilateral conditions hold, i.e.

u′(0) < 0, u(π) > 0.

Bifurcation points

λ =

(

2n − 1

2

)2

, n = 2, 4, · · ·
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Mixed Neumann and Dirichlet boundary conditions:

u′(0) = 0 = u(π),

where now λ must be restricted so that the first and the

second of the unilateral conditions hold, i.e.

u(0) > 0, u′(π) > 0.

In this case we obtain the set of bifurcation points as for

the other set of mixed boundary conditions considered

above.

1.1 An equivalent variational inequality

Let K be defined by

K = {u ∈ H1(0, π) : u(0) ≥ 0, u(π) ≥ 0}.
Then above unilateral problem is equivalent to the variational

inequality










∫ π

0

u′(v − u)′ − λ(u + u3)(v − u) ≥ 0, u ∈ K,

∀v ∈ K

Let IK be the indicator function of the set K, i.e.

IK(u) =







0, u ∈ K

∞, u /∈ K,
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The variational inequality is equivalent to the variational inequal-

ity






















∫ π

0

u′(v − u)′ − λ(u + u3)(v − u)

+IK(v) − IK(u) ≥ 0,

∀v ∈ H1(0, π).

1.2 A simply supported, or clamped, slender beam
subject to elastic obstacles











































∫ a

0

u′′(v − u)′′ − λ

∫ a

0

u′

√
1 + u′2

(v − u)′

+

[
∫

I1

k1(v
−)γdx +

∫

I2

k2(v
+)βdx

]

−
[
∫

I1

k1(u
−)γ +

∫

I2

k2(u
+)βdx

]

≥ 0, ∀v ∈ E,

u ∈ E.

[0, a] (a > 0) is the interval occupied by the beam

E = H2
0 (0, a), or E = H2(0, a) ∩ H1

0 (0, a)
depending on whether the beam is clamped or is

simply supported at the ends 0 and a.

I1, I2 ⊂ (0, a), |I1|, |I2| > 0 are closed sets rep-

resenting the domain of possible contact between the
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beam and the foundations.

1.3 Bifurcation problems for Navier-Stokes flows






















ν

∫

Ω

Du : D(v − u) + b(u, u, v − u) + j(v) − j(u)

≥
∫

Ω

g(x, u, λ) · (v − u), ∀v ∈ E

u ∈ E.

E = {v ∈ [H1
0 (Ω)]3 : divv = 0 a.e. in Ω}.

Du = [∂iuj ]1≤i,j≤3

ν > 0 is the viscosity constant.

b is the trilinear form defined on [H1
0 (Ω)]3 by

b(u, v, w) =

∫

Ω

3
∑

i,j=1

ui(∂ivj)wjdx

=

∫

Ω

uT (Du)wdx,

for all u, v, w ∈ [H1
0 (Ω)]3.

j : V → [0,∞] a convex, lower semicontinuous

functional such that j(0) = 0
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g : Ω × R
3 × R → R

3, (x, u, λ) 7→ g(x, u, λ)
satisfies the Carathéodory condition and g is

differentiable with respect to u and g, Dug satisfies the

usual growth condition:






|g(x, u, λ)| ≤ A(λ) + B(λ)|u|s−1

|Dug(x, u, λ)| ≤ A(λ) + B(λ)|u|s−2,
(1)

for a.e. x ∈ Ω, all u, λ ∈ R, with A, B ∈ L∞
loc(R),

1 < s < 3(2∗ = 6).

u is the velocity of the fluid

g is the outer force acting on the fluid. g depends on u
(in a nonlinear manner) and on λ, which usually

represents the magnitude of the force.

g(x, 0, λ) = 0 for a.e. x ∈ Ω, all λ ∈ R,

i.e., we have no external force at points with zero velocity

j is a constraint imposed on the velocity. In many

cases, j is of the form j = IK , where K is a closed,

convex subset of V , representing the set of admissible

velocity fields of the fluid. For example, interesting

choices of K are the following:

K = {u ∈ E : u1(x) ≥ −c, u2(x) ≥ −d, c, d ≥ 0},
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K = {u ∈ E : |∇ × u| ≤ c, c ≥ 0},

K = {u ∈ E : |
∫

S

u · ndS| ≤ c, c ≥ 0}.

In the case j = 0, the variational inequality becomes the

equation:











ν

∫

Ω

Du : Dv + b(u, u, v) =

∫

Ω

g(x, u, λ) · v, ∀v ∈ E

u ∈ E,

which is the usual variational form of the Navier-Stokes equa-

tion (cf. [11], [16], or [17]).

Other interesting choices for the functional j (the case of

visco plastic Bingham fluids, cf. [11]) are:

j(u) =

∫

Ω

µ(x)|Du|γ ,

j(u) =

∫

Ω

µ(x)|
∑

ǫ2ij(u)|γ ,

where

ǫij(u) =
1

2
(∂iuj + ∂jui)

and µ is a nonnegative locally integrable function.
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1.4 Bifurcation problems associated with the p-
Laplace operator

In this example, we consider bifurcation problems for the following vari-

ational inequality:

8

>

<

>

:

Z

Ω

|∇u|p−2∇u∇(v − u) −

Z

Ω

[λ|u|p−2
u+ g(x, u, λ)](v − u)

+j(v) − j(u) ≥ 0, ∀v ∈ E

p > 1

Ω is a bounded domain in R
N (N ≥ 1) with a smooth

boundary,

E = {u ∈W
1,p(Ω) : v = 0 on Γ},

where Γ is a (relatively) open subset of ∂Ω with positive

measure. W 1,p(Ω) is the usual Sobolev space, equipped

with the norm,

‖u‖W1,p(Ω) =

»
Z

Ω

(|u|p + |∇u|p)

–1/p

,

‖u‖ =

„
Z

Ω

|∇u|p
«1/p

, u ∈ E,

is a norm onE, equivalent to ‖ · ‖W1,p(Ω).
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g : Ω × R × R → R

is a Carathéodory function, such that

g(x, u, λ) = o(|u|p−1),

as u → 0, uniformly a.e. with respect to x ∈ Ω and uni-

formly with respect to λ on bounded intervals, and, moreover,

g satisfies the growth condition

|g(x, u, λ)| ≤ C(λ)[m(x) +M |u|p−1],

for a.e. x ∈ Ω, all u, λ ∈ R, where C(λ) ≥ 0 is bounded

on bounded sets,m ∈ L
p

p−1 (Ω), andM > 0 is a constant.

j is given by

j(u) =

Z

∂Ω\Γ

ψ(u(x))dS, u ∈ V,

where ψ : R → [0,∞] is a proper, convex, lower semicon-

tinuous function.

2 The abstract setting

E a reflexive Banach space

E∗ its dual

The norm in E is ‖ · ‖
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The norm in E∗ is ‖ · ‖∗.

The pairing between E∗ and E is 〈·, ·〉, i.e. if f ∈ E∗ and

u ∈ E, then f(u) = 〈f, u〉.

We shall assume that:

j, J : E → R+ ∪∞

are convex and lower semicontinuous functionals with

j(0) = J(0) = 0.

A, α : E → E
∗

are continuous and bounded operators with

A(0) = α(0) = 0,

which are strictly monotone, coercive and belong to class (S),
i.e:

A is strictly monotone:

〈A(u) − A(v), u− v〉 > 0, whenever u 6= v.

A is coercive: There exist constants c > 0 and p > 1 such

that

〈A(u), u〉 ≥ c‖u‖p
, ∀u ∈ E.
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A belongs to class (S) : For all weakly convergent

sequences {vn}, vn ⇀ v, with

lim〈A(vn), vn − v〉 = 0,

it must hold that

vn → v.

B, f : R × E → E
∗

are completely continuous operators with

B(λ, 0) = 0 = f(λ, 0), ∀λ ∈ R.

2.1 Homogenizations

The following relationships between the operators introduced above

will be assumed:

For all sequences {vn}, vn → v, and all sequences of

positive numbers σn, σn → 0+,

lim
1

σ
p−1
n

A(σnvn) = α(v).

For all weakly convergent sequences {vn}, vn ⇀ v, and

all sequences of positive numbers σn, σn → 0+, all

sequences {λn}, λn → λ,

lim
1

σ
p−1
n

B(λn, σnvn) = f(λ, v).

1-11



For all weakly convergent sequences {vn}, vn ⇀ v, and

all sequences of positive numbers σn, σn → 0+,

lim inf
1

σ
p
n
j(σnvn) ≥ J(v),

further, for all v ∈ E, and all sequences of positive numbers

σn, σn → 0+, there exists a sequence {vn}, vn → v,

such that

lim
1

σ
p
n
j(σnvn) = J(v).

2.2 Equivalent operator equations

Consider, for f ∈ E∗, the variational inequality
8

<

:

〈A(u) − f, v − u〉 + j(v) − j(u) ≥ 0,

∀v ∈ E.

Classical results (see e.g. [11])

⇓

TA,j : E∗ → E

by

TA,j(f) = u,

where u is the unique solution of the inequality.

This operator is also continuous (cf. [9]). Therefore u solves
8

<

:

〈A(u) − B(λ, u), v − u〉 + j(v) − j(u) ≥ 0,

∀v ∈ E,
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if and only if u solves

TA,jB(λ, u) = u.

And similarly if we consider the variational inequality
8

<

:

〈α(u) − f(λ, u), v − u〉 + J(v) − J(u) ≥ 0,

∀v ∈ E,

then u solves if and only if u solves

Tα,Jf(λ, u) = u.

It follows from the relationships between A and α, B and f and

j and J, that if u solves then so does σu for any σ(> 0) ∈ R.

3 Global bifurcation

Let us assume that (λ0, 0) ∈ R×E is a bifurcation point, then it fol-

lows that the homogenized inequality will have a nontrivial solution for

λ = λ0. Therefore, if a ∈ R is such that the homogenized inequality

has only the trivial solution for λ = a, it will follow that for r > 0,
sufficiently small, the Leray-Schauder degree

d(id − Tα,Jf(a, ·), Br(0), 0)

is defined (here Br(0) is the open ball of radius r in E centered at

0)

and we obtain

d(id − Tα,Jf(a, ·), Br(0), 0) = d(id − TA,jB(a, ·), Br(0), 0)
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(see e.g. [9]).

We hence may employ the homotopy invariance principle of the

Leray-Schauder degree, to conclude that if a, b ∈ R, a < b are such

that

d(id − Tα,Jf(a, ·), Br(0), 0) 6= d(id − Tα,Jf(b, ·), Br(0), 0)

then [a, b] × {0} will contain a bifurcation point. In fact, we may

employ the global bifurcation result of Rabinowitz [15] to conclude that

global bifurcation takes place in the sense of that theorem.

Thus in such bifurcation problems, in order to be able to apply the

above considerations we need to compute the operators α and f, the

functional J and verify that the degree changes as λ varies from a to

b. This we shall do for the examples considered earlier.

4 Examples revisited

4.1 Semilinear problems

a : E × E → R

is a continuous, coercive and bilinear form

A : E → E
∗

is defined by

〈A(u), v〉 = a(u, v).
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B(λ, u) = λBu+R(u), R(u) = o(‖u‖), as u→ 0,

with B compact linear

j = IK ,

where K is a closed convex subset ofE with 0 ∈ K.

One computes

p = 2

α = A

f(λu) = λBu

J = IK0
, where K0 is the support cone ofK, i.e

K0 = ∪t>0tK.

If it is the case that K0 is a subspace of E, then the variational

inequality becomes

8

<

:

〈α(u) − f(λ, u), v − u〉 + IK0
(v) − IK0

(u) ≥ 0,

∀v ∈ E,

which is equivalent to

8

<

:

〈α(u) − f(λ, u), v − u〉 ≥ 0, u ∈ K0

∀v ∈ K0,
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and, sinceK0 is a subspace, the latter is equivalent to

8

<

:

〈α(u) − f(λ, u), v〉 = 0, u ∈ K0

∀v ∈ K0.

From this we see that the solution operator Tα,J is a bounded

linear operator and the operator equation becomes

u = λTα,JBu.

Hence the possible bifurcation points are to be sought among

the countable set {(λi, 0)}, where λi is a characteristic value of the

compact linear operator Tα,JB. And each characteristic value of odd

multiplicity will yield a bifurcation point. We note here that what has just

been said is true as long as J is the indicator function of a subspace,

iregardless whether j = IK for some closed convex setK.

4.2 A semilinear elliptic problem

Ω ⊂ R
N a bounded domain with smooth boundary ∂Ω, and

let Γ ⊂ ∂Ω be a relatively open subset of positive measure.

E = {u ∈ H
1(Ω) : u = 0, a.e. on Γ}.

Let

a : E × E → R

be given by

a(u, v) =

Z

Ω

∇u · ∇v,
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a is a continuous, coercive and bilinear form.

Let g : R → R be a continuous function with

g(u) = o(|u|) as u→ 0, and defineB(λ, u) by

〈B(λ, u), v〉 =

Z

Ω

λuv + g(u)v,

then

〈f(λ, u), v〉 =

Z

Ω

λuv.

Let the functional j be

j(u) =

Z

∂Ω

µ|u|γ ,

where µ, γ are positive constants with 1 ≤ γ < 2.

Embedding theorems (see [1]) imply that the mapping

H1(Ω) →֒ Lq(∂Ω)

u 7→ u|∂Ω

are compact for

1 ≤ q < p̄ =

8

<

:

2(N−1)
N−2

, N > 2

∞, N = 1, 2

j is convex and lower semicontinuous and (since p = 2 and

1 ≤ γ < 2) that

J(u) = IH1

0
(Ω).
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the inequality is equivalent to the problem
Z

Ω

∇u · ∇v + λ

Z

Ω

uv = 0, ∀v ∈ H
1
0 (Ω),

which is equivalent to the eigenvalue problem

∆u+ λu = 0, u ∈ H
1
0 (Ω).

Let

E = {u ∈W
1,p(Ω) : u = 0, a.e. on Γ}

A : E → E
∗

given by

〈A(u), v〉 =

Z

Ω

|∇u|p−2∇u · ∇v.

Let g : R → R be a continuous function with

g(u) = o(|u|p−1) as u→ 0, and defineB(λ, u) by

〈B(λ, u), v〉 =

Z

Ω

λ|u|p−2
uv + g(u)v,

〈f(λ, u), v〉 =

Z

Ω

λ|u|p−2
uv.

Let j be

j(u) =

Z

∂Ω

µ|u|,

where µ is a positive constant.
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W 1,p(Ω) →֒ L1(∂Ω)

u 7→ u|∂Ω

is compact.

j is convex and lower semicontinuous and that

J(u) = I
W

1,p

0
(Ω)
.

The inequality is equivalent to the problem

Z

Ω

|∇u|p−2∇u·∇v+λ

Z

Ω

|u|p−2
uv = 0, ∀v ∈W

1,p
0 Ω,

which is equivalent to the eigenvalue problem

−div(|∇u|p−2∇u) + λ|u|p−2
u = 0, u ∈W

1,p
0 (Ω).

4.3 Stationary Navier-Stokes flows

A is given by a continuous, coercive and bilinear form, hence

A = α.

〈f(λ, u), v〉 = λ

Z

Ω

Dug(x, 0)u · v

If j = IK , whereK is any of the choices given earlier, then

J = IE , since the support cone ofK in any of the cases is

the whole space.
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The homogenized inequality is given by
8

>

<

>

:

ν

Z

Ω

Du : Dv + λ

Z

Ω

Dug(x, 0)u · v = 0

∀v ∈ E,

which is the eigenvalue problem for the Stokes equation. Its

eigenvalues of odd multiplicity hence yield global bifurcation

points.

j is given by

j(u) =

Z

Ω

µ(x)|Du|γ ,

where µ ∈ L∞(Ω) and γ ≥ 1.

The effective domain of j is given by

{u : j(u) <∞} =

8

<

:

E, 1 ≤ γ ≤ 2

u ∈ E : µ|Du|γ ∈ L1(Ω), γ > 2

J =

8

>

>

>

<

>

>

>

:

IW , 1 ≤ γ < 2

j, γ = 2

IE, γ > 2,

where

W = {u ∈ E : Du = 0, a.e. on Ω \ Ω0},

and

Ω0 = {x ∈ Ω : µ(x) = 0}.
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