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1 Introduction to Malliavin Calculus

The Malliavin calculus is an infinite dimensional calculus on a Gaussian space, which
is mainly applied to establish the regularity of the law of nonlinear functionals of the
underlying Gaussian process.

Suppose that H is a real separable Hilbert space with scalar product denoted by 〈·, ·〉H .
The norm of an element h ∈ H will be denoted by ‖h‖H .

Consider a Gaussian family of random variables W = {W (h), h ∈ H} defined in a
complete probability space (Ω,F , P ), with zero mean and covariance

E(W (h)W (g)) = 〈h, g〉H .

The mapping h → W (h) provides a linear isometry of H onto a closed subspace of H1

of L2(Ω).

Example 1 If B = {Bt, t ≥ 0} is a Brownian motion, we take H = L2([0,∞)) and

W (h) =

∫ ∞

0

h(t)dBt.
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Example 2 In the case H = L2(T,B, µ), where µ is a σ-finite measure without atoms,
for any set A ∈ B with µ(A) <∞ we define

W (A) = W (1A).

Then, A → W (A) is a Gaussian measure with independent increments (Gaussian white
noise). That is, if A1, . . . , An are disjoint sets with finite measure, the random variables
W (A1), . . . ,W (An) are independent, and for any A ∈ B with µ(A) < ∞, W (A) has
the distribution N(0, µ(A)). In this case, any square integrable random variable F ∈
L2(Ω,F , P ) (assuming that the σ-field F is generated by {W (h)}) admits the following
Wiener chaos expansion

F = E(F ) +
∞∑

n=1

In(fn). (1.1)

In this formula fn is a symmetric function of L2(T n) and In denotes the multiple stochastic
integral introduced by Itô in [6]. In particular I1(f1) = W (f1). Furthermore,

E(F 2) = E(F )2 +
∞∑

n=1

n!‖fn‖2
L2(T n).

1.1 Derivative operator

Let S denote the class of smooth and cylindrical random variables variable of the form

F = f(W (h1), . . . ,W (hn)),

where f belongs to C∞
p (Rn) (f and all its partial derivatives have polynomial growth

order), h1, . . . , hn are in H, and n ≥ 1.

The derivative of F is the H-valued random variable given by

DF =
n∑

i=1

∂f

∂xi

(W (h1), . . . ,W (hn))hi.

Example D(W (h)) = h, D(W (h)2) = 2W (h)h.

The following result is an integration by parts formula.
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Proposition 1.1 Suppose that F is a smooth and cylindrical random variable and h ∈
H. Then

E(〈DF, h〉H) = E(FW (h)).

Proof. We can assume that there exist orthonormal elements of H, e1, . . . , en, such that
h = e1 and

F = f(W (e1), . . . ,W (en)),

where f ∈ C∞
p (Rn). Let φ(x) denote the density of the standard normal distribution on

Rn, that is,

φ(x) = (2π)−
n
2 exp(−1

2

n∑
i=1

x2
i ).

Then we have

E(〈DF, h〉H) = E

(
∂f

∂x1

(W (e1))

)
=

∫
Rn

∂f

∂x1

(x)φ(x)dx

=

∫
Rn

f(x)φ(x)x1dx = E(FW (e1)),

which completes the proof.

Applying the previous result to a product FG, we obtain the following consequence.

Proposition 1.2 Suppose that F and G are smooth and cylindrical random variables,
and h ∈ H. Then we have

E(G〈DF, h〉H) = E(−F 〈DG, h〉H + FGW (h)).

Proof. Use
D(FG) = FDG+GDF.

As a consequence we obtain the following result.

Proposition 1.3 The operator D is closable from Lp(Ω) to Lp(Ω;H) for any p ≥ 1.
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Proof. Let {FN , N ≥ 1} be a sequence of random variables in S such that

FN → 0 in Lp(Ω),

and
DFN → η in Lp(Ω;H),

as N tends to infinity. Then, we claim that η = 0. Indeed, for any h ∈ H and for any
random variable F = f(W (h1), . . . ,W (hn)) ∈ S such that f and its partial derivatives
are bounded, and FW (h) is bounded, we have

E(〈η, h〉HF ) = lim
N→∞

E(〈DFN , h〉HF )

= lim
N→∞

E(−FN〈DF, h〉H + FNFW (h)) = 0

This implies η = 0.

For any p ≥ 1 we denote by D1,p the closure of S with respect to the seminorm

‖F‖1,p = [E(|F |p) + E(‖DF‖p
H)]

1
p .

For p = 2, the space D1,2 is a Hilbert space with the scalar product

〈F,G〉1,2 = E(FG) + E(〈DF,DG〉H).

We can define the iteration of the operator D in such a way that for a random variable
F ∈ S, the iterated derivative DkF is a random variable with values in H⊗k.

For every p ≥ 1 and any natural number k ≥ 1 we introduce the seminorm on S defined
by

‖F‖k,p =

[
E(|F |p) +

k∑
j=1

E(‖DjF‖p
H⊗j)

] 1
p

.

We denote by Dk,p the closure of S with respect to the seminorm ‖ · ‖k,p.

For any k ≥ 1 and p > q we have Dk,p ⊂ Dk−1,q. We set D∞ = ∩k,pDk,p.

Remark 1 If H = Rn, then the spaces Dk,p can be identified as ordinary Sobolev spaces
of functions on Rn that together with their k first partial derivatives have moments of
order p with respect to the standard normal law.
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Remark 2 The above definitions can be exended to Hilbert-valued random variables:
Dk,p(V ), where V is a given Hilbert space.

The following result is the chain rule, which can be easily proved by approximating the
random variable F by smooth and cyllindrical random variables and the function ϕ by
ϕ ∗ ψε, where {ψε} is an approximation of the identity.

Proposition 1.4 Let ϕ : Rm → R be a continuously differentiable function with
bounded partial derivatives, and fix p ≥ 1. Suppose that F = (F 1, . . . , Fm) is a random
vector whose components belong to the space D1,p. Then ϕ(F ) ∈ D1,p, and

D(ϕ(F )) =
m∑

i=1

∂ϕ

∂xi

(F )DF i.

The following Hölder inequality is proved easily, and it implies that D∞ is closed by
multiplication.

Proposition 1.5 Let F ∈ Dk,p, G ∈ Dk,q for k ∈ N∗, 1 < p, q <∞ and let r be such
that 1

p
+ 1

q
= 1

r
. Then, FG ∈ Dk,r and

‖FG‖k,r ≤ cp,q,k ‖F ‖k,p ‖G‖k,q .

Consider now the white noise case, that is, H = L2(T,B, µ). Then, the derivative DF
is a random element in L2(Ω;H) ∼ L2(Ω× T,F ⊗ B, P × µ), that is, it is a stochastic
process that we denote by {DtF, t ∈ T}.

Suppose that F is a square integrable random variable having an orthogonal Wiener chaos
expansion of the form

F = E(F ) +
∞∑

n=1

In(fn), (1.2)

where the kernels fn are symmetric functions of L2(T n). The derivative DtF can be
easily computed using this expression.

Proposition 1.6 Let F ∈ L2(Ω) be a square integrable random variable with a devel-
opment of the form (1.2). Then F belongs to D1,2 if and only if

∞∑
n=1

nn!‖fn‖2
L2(T n) <∞
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and in this case we have

DtF =
∞∑

n=1

nIn−1(fn(·, t)). (1.3)

Proof. Suppose first that F = In(fn), where fn is a symmetric and elementary function
of the form

f(t1, . . . , tn) =
m∑

i1,...,in=1

ai1···in1Ai1
×···×Ain

(t1, . . . , tn), (1.4)

where A1, A2, . . . , Am are pair-wise disjoint sets with finite measure, and the coefficients
ai1···in are zero if any two of the indices i1, . . . , in are equal. Then

DtF =
n∑

j=1

m∑
i1,...,in=1

ai1···inW (Ai1) · · ·1Aij
(t) · · ·W (Ain) = nIn−1(fn(·, t)).

Then the result follows easily.

The heuristic meaning of the preceding proposition is clear. Suppose that F is a multiple
stochastic integral of the form In(fn), which can be denoted by

In(fn) =

∫
T

· · ·
∫

T

fn(t1, . . . , tn)W (dt1) · · ·W (dtn).

Then, F belongs to the domain of the derivation operator and DtF is obtained simply by
removing one of the stochastic integrals, letting the variable t be free, and multiplying by
the factor n.

We will make use of the following result.

Lemma 1.7 Let {Fn, n ≥ 1} be a sequence of random variables converging to F in
Lp(Ω) for some p > 1. Suppose that supn ‖Fn‖k,p <∞ for some k ≥ 1. Then Then F
belongs to Dk,p.

Proof. We do the proof only in the case p = 2, k = 1 and assuming that we are in the
white noise context. There exists a subsequence {Fn(k), k ≥ 1} such that the sequence
of derivatives DFn(k) converges in the weak topology of L2(Ω × T ) to some element
α ∈ L2(Ω × T ). Then, for any h ∈ H the projections of 〈h,DFn(k)〉 on any Wiener
chaos converge in the weak topology of L2(Ω), as k tends to infinity, to those of 〈h, α〉.
Consequently, Proposition 1.6 implies F ∈ D1,2 and α = DF . Moreover, for any weakly
convergent subsequence the limit must be equal to α by the preceding argument, and this
implies the weak convergence of the whole sequence.
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Proposition 1.8 Let F be a random variable of the space D1,2 such that DF = 0.
Then F = E(F ).

Proof. In the white noise case, this proposition is obvious from the Wiener chaos expan-
sion of the derivative provided in Proposition 1.6. In the general case the result is also
true, even for random variables in D1,1.

Proposition 1.9 Let A ∈ F . Then the indicator function of A belongs to D1,2 if and
only if P (A) is equal to zero or one.

Proof. By the chain rule (Proposition 1.4) applied to to a function ϕ ∈ C∞
0 (R), which

is equal to x2 on [0, 1], we have

D1A = D(1A)2 = 21AD1A

and, therefore, D1A = 0 because from the above equality we get that this derivative
is zero on Ac and equal to twice its value on A. So, by the Proposition 1.8 we obtain
1A = P (A).

1.2 Divergence operator

We denote by δ the adjoint of the operator D (divergence operator). That is, δ is an
unbounded operator on L2(Ω;H) with values in L2(Ω) such that:

(i) The domain of δ, denoted by Dom δ, is the set of H-valued square integrable
random variables u ∈ L2(Ω;H) such that

|E(〈DF, u〉H)| ≤ c‖F‖2,

for all F ∈ D1,2, where c is some constant depending on u.

(ii) If u belongs to Dom δ, then δ(u) is the element of L2(Ω) characterized by the
duality relation

E(Fδ(u)) = E(〈DF, u〉H)

for any F ∈ D1,2.
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Properties of the divergence

1. E(δ(u)) = 0 (take F = 1 in the duality formula).

2. Consider the set SH of H-valued cylindrical and smooth random variables of the form
u =

∑n
j=1 Fjhj, where the Fj ∈ S, and hj ∈ H. Then, Proposition 1.2 implies that an

element u ∈ SH belongs to the domain of δ and

δ(u) =
n∑

j=1

FjW (hj)−
n∑

j=1

〈DFj, hj〉H .

We will make use of the notation DhF = 〈DF, h〉H , for any h ∈ H and F ∈ D1,2.

Three basic formulas

Suppose that u, v ∈ SH , F ∈ S and h ∈ H. Then, if {ei} is a complete orthonormal
system in H

E(δ(u)δ(v)) = E(〈u, v〉H) + E

(
∞∑

i,j=1

Dei
〈u, ej〉HDej

〈v, ei〉H

)
(1.5)

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H (1.6)

δ(Fu) = Fδ(u)− 〈DF, u〉H . (1.7)

Proof of (1.6): Assume u =
∑n

j=1 Fjhj. Then

Dh(δ(u)) = Dh

(
n∑

j=1

FjW (hj)−
n∑

j=1

〈DFj, hj〉H

)

=
n∑

j=1

Fj 〈h, hj〉H +
n∑

j=1

(
DhFjW (hj)− 〈Dh (DFj) , hj〉H

)
= 〈u, h〉H + δ(Dhu).
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Proof of (1.5): Using the duality formula and (1.6) yields

E (δ(u)δ(v))) = E (〈v,D(δ(u))〉H) = E

(
∞∑
i=1

〈v, ei〉H Dei
(δ(u))

)

= E

(
∞∑
i=1

〈v, ei〉H (〈u, ei〉H + δ(Dei
u))

)

= E (〈u, v〉H) + E

(
∞∑

i,j=1

Dei
〈u, ej〉H Dej

〈v, ei〉H

)
.

Proof of (1.7): For any smooth random variable G ∈ S we have

E (〈DG,Fu〉H) = E (〈u,D(FG)−GDF 〉H)

= E ((δ(u)F − 〈u,DF 〉H)G) .

Remark 1 Property (1.5) implies the estimate

E
(
δ(u)2

)
≤ E

(
‖u‖2

H

)
+ E

(
‖Du‖2

H⊗H

)
= ‖u‖2

1,2,H .

As a consequence, D1,2(H) ⊂ Dom δ.

Remark 2 Properties (1.5), (1.6) and (1.7) hold under more general conditions:

1. u ∈ D1,2(H) for (1.5).

2. u ∈ D1,2(H) and Dhu belongs to Dom δ for (1.6).

3. F ∈ D1,2, u ∈ Dom δ, Fu ∈ L2(Ω;H), and Fδ(u)− 〈DF, u〉H ∈ L2(Ω) for (1.7).

Consider the case of a Gaussian white noise H = L2(T,B, µ).

Proposition 1.10 Fix a set A ∈ B with finite measure. Let FAc be the σ-field generated
by the random variables {W (B), B ⊂ Ac}. Suppose that F ∈ L2(Ω,FAc , P ). Then F1A

belongs to the domain of the divergence and
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δ(F1A) = FW (A).

Proof. If F is cyllindrical and smooth, then

δ(F1A) = FW (A)− 〈DF,1A〉H = FW (A)−
∫

A

DtFµ(dt) = FW (A),

because DtF = 0 if t ∈ A.

Consider the particular case T = [0,∞). Then Bt = W (1[0,t]) is a Brownian motion.
Let Ft be the σ-field generated by the random variables {Bs, 0 ≤ s ≤ t}. We say that
a stochastic process {ut, t ≥ 0} is adapted if for all t ≥ 0 the random variable ut is Ft

measurable.Then, the class L2
a of adapted stochastic processes such that E

(∫∞
0
u2

tdt
)
<

∞ is included in the domain of the divergence and δ(u) coincides with the Itô stochastic
integral:

δ(u) =

∫ ∞

0

utdBt.

This is a consequence of Proposition 1.10 and the fact that the operator δ is closed.

The following theorem is based on Meyer inequalities and it is a central result in Malliavin
Calculus:

Theorem 1.11 The operator δ is continuous from Dk,p(H) into Dk−1,p for all p > 1
and k ≥ 1. That is,

‖δ(u)‖k−1,p ≤ Ck,p‖u‖k,p.

The following proposition provides a precise estimate for the norm p of the divergence
operator.

Proposition 1.12 Let u be an element of D1,p(H), p > 1. Then we have

‖δ(u)‖p ≤ cp

(
‖E(u)‖H + ‖Du‖Lp(Ω;H⊗H)

)
.

Exercises

1.1 Let F ∈ Dk,2 be given by the expansion F = E(F ) +
∑∞

n=1 In(fn). Show that for
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all k ≥ 1,

Dk
t1,...,tk

F =
∞∑

n=k

n(n− 1) · · · (n− k + 1)In−k(fn(·, t1, . . . , tk)),

and

E(‖DkF‖2
L2(T k)) =

∞∑
n=k

n!2

(n− k)!
‖fn‖2

L2(T n).

1.2 Suppose that F = E(F ) +
∑∞

n=1 In(fn) is a random variable belonging to the space

D∞,2 = ∩kDk,2. Show that fn = 1
n!
E(DnF ) for every n ≥ 1 (Stroock’s formula).

1.3 Let F = exp(W (h) − 1
2

∫
T
h2

sµ(ds)), h ∈ L2(T ). Compute the iterated derivatives

of F and the kernels of its expansion into the Wiener chaos.

1.4 Let F ∈ D1,2 be a random variable such that E(|F |−2) < ∞. Then P{F > 0} is

zero or one.

1.5 Suppose that H = L2(T ). Let δk be the adjoint of the operator Dk. That is, a

multiparameter process u ∈ L2(Ω× T k) belongs to the domain of δk if and only if there
exists a random variable δk(u) such that

E(Fδk(u)) = E(〈u,DkF 〉L2(T k))

for all F ∈ Dk,2. Show that a process u ∈ L2(Ω× T k) with an expansion

ut = E(ut) +
∞∑

n=1

In(fn(·, t)), t ∈ T k,

belongs to the domain of δk if and only if the series

δk(u) =

∫
T

E(ut)dWt +
∞∑

n=1

In+k(fn)

converges in L2(Ω).

1.6 Let {Wt, t ∈ [0, 1]} be a one-dimensional Brownian motion. Using Exercise 1.2 find

the Wiener chaos expansion of the random variables

F1 =

∫ 1

0

(t3W 3
t + 2tW 2

t )dWt, F2 =

∫ 1

0

teWtdWt.
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2 Application of Malliavin Calculus to regularity of
probability laws

The integration-by-parts formula leads to the following explicit expression for the density
of a one-dimensional random variable.

Proposition 2.1 Let F be a random variable in the space D1,2. Suppose that DF
‖DF‖2H

belongs to the domain of the operator δ in L2(Ω). Then the law of F has a continuous
and bounded density given by

p(x) = E

[
1{F>x}δ

(
DF

‖DF‖2
H

)]
. (2.8)

Proof. Let ψ be a nonnegative smooth function with compact support, and set ϕ(y) =∫ y

−∞ ψ(z)dz. We know that ϕ(F ) belongs to D1,2, and making the scalar product of its
derivative with DF obtains

〈D(ϕ(F )), DF 〉H = ψ(F )‖DF‖2
H .

Using the duality formula we obtain

E[ψ(F )] = E

[〈
D(ϕ(F )),

DF

‖DF‖2
H

〉
H

]
= E

[
ϕ(F )δ

(
DF

‖DF‖2
H

)]
. (2.9)

By an approximation argument, Equation (2.9) holds for ψ(y) = 1[a,b](y), where a < b.
As a consequence, we apply Fubini’s theorem to get

P (a ≤ F ≤ b) = E

[(∫ F

−∞
ψ(x)dx

)
δ

(
DF

‖DF‖2
H

)]
=

∫ b

a

E

[
1{F>x}δ

(
DF

‖DF‖2
H

)]
dx,

which implies the desired result.

Notice that Equation (2.8) still holds under the hypotheses F ∈ D1,p and DF
‖DF‖2H

∈
D1,p′(H) for some p, p′ > 1.
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From expression (2.8) we can deduce estimates for the density. Fix p and q such that
1
p

+ 1
q

= 1. By Hölder’s inequality we obtain

p(x) ≤ (P (F > x))1/q

∥∥∥∥δ( DF

‖DF‖2
H

)∥∥∥∥
p

.

In the same way, taking into account the relation E[δ(DF/‖DF‖2
H)] = 0 we can deduce

the inequality

p(x) ≤ (P (F < x))1/q

∥∥∥∥δ( DF

‖DF‖2
H

)∥∥∥∥
p

.

As a consequence, we obtain

p(x) ≤ (P (|F | > |x|))1/q

∥∥∥∥δ( DF

‖DF‖2
H

)∥∥∥∥
p

, (2.10)

for all x ∈ R. Now using the Lp(Ω) estimate of the operator δ established in Proposition
1.12 we obtain∥∥∥∥δ( DF

‖DF‖2
H

)∥∥∥∥
p

≤ cp

(∥∥∥∥E ( DF

‖DF‖2
H

)∥∥∥∥
H

+

∥∥∥∥D( DF

‖DF‖2
H

)∥∥∥∥
Lp(Ω;H⊗H)

)
. (2.11)

We have

D

(
DF

‖DF‖2
H

)
=

D2F

‖DF‖2
H

− 2
〈D2F,DF ⊗DF 〉H⊗H

‖DF‖4
H

,

and, hence, ∥∥∥∥D( DF

‖DF‖2
H

)∥∥∥∥
H⊗H

≤
3 ‖D2F‖H⊗H

‖DF‖2
H

. (2.12)

Finally, from the inequalities (2.10), (2.11) and (2.12) we deduce the following estimate.

Proposition 2.2 Let q, α, β be three positive real numbers such that 1
q
+ 1

α
+ 1

β
= 1.

Let F be a random variable in the space D2,α, such that E(‖DF‖−2β
H ) < ∞. Then the

density p(x) of F can be estimated as follows

p(x) ≤ cq,α,β (P (|F | > |x|))1/q

×
(
E(‖DF‖−1

H ) +
∥∥D2F

∥∥
Lα(Ω;H⊗H)

∥∥‖DF‖−2
H

∥∥
β

)
. (2.13)
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Suppose that F = (F 1, . . . , Fm) is a random vector whose components belong to the
space D1,1. We associate to F the following random symmetric nonnegative definite
matrix:

γF = (〈DF i, DF j〉H)1≤i,j≤m.

This matrix will be called the Malliavin matrix of the random vector F . The basic condition
for the absolute continuity of the law of F will be that the matrix γF is invertible a.s. In
this sense we have the following result, proved by Bouleau and Hirsch (see[1]):

Theorem 2.3 Let F = (F 1, . . . , Fm) be a random vector verifying the following con-
ditions:

(i) F i ∈ D1,2 for all i = 1, . . . ,m .

(ii) The matrix γF safistifes det γF > 0 almost surely.

Then the law of F is absolutely continuous with respect to the Lebesgue measure on Rm.

Condition (i) in Theorem 2.3 implies that the measure (det(γF ) · P ) ◦ F−1 is absolutely
continuous with respect to the Lebesgue measure on Rm. In other words, the random
vector F has an absolutely continuous law conditioned by the set {det(γF ) > 0}; that is,

P{F ∈ B, det(γF ) > 0} = 0

for any Borel subset B of Rm of zero Lebesgue measure.

The following theorem is the general criterion for the smoothness of densities.

Theorem 2.4 Let F = (F 1, . . . , Fm) be a random vector verifying the following con-
ditions:

(i) F i ∈ D∞ for all i = 1, . . . ,m.

(ii) The matrix γF safistifes E[(det γF )−p] <∞ for all p ≥ 2.

Then the law of F possesses an infinitely differentiable density.
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A random vector satisfying the conditions of Theorem 2.4 is called nondegenerate. For any
multiindex α ∈ {1, . . . ,m}k, k ≥ 1 we will denote by ∂α the partial derivative ∂k

∂xα1 ···∂xαk
.

For the proof of Theorem 2.4 we need some preliminary material.

Lemma 2.5 Suppose that γ is an m × m random matrix that is invertible a.s. and
such that | det γ|−1 ∈ Lp(Ω) for all p ≥ 1. Suppose that the entries γij of γ are in D∞.

Then (γ−1)
ij

belongs to D∞ for all i, j, and

D
(
γ−1
)ij

= −
m∑

k,l=1

(
γ−1
)ik (

γ−1
)lj
Dγkl. (2.14)

Proof. First notice that {det γ > 0} has probability zero or one (see Exercise 1.4). We
will assume that det γ > 0 a.s. For any ε > 0 define

γ−1
ε =

det γ

det γ + ε
γ−1.

Note that (det γ+ ε)−1 belongs to D∞ because it can be expressed as the composition of
det γ with a function in C∞

p (R). Therefore, the entries of γ−1
ε belong to D∞. Furthermore,

for any i, j, (γ−1
ε )

ij
converges in Lp(Ω) to (γ−1)

ij
as ε tends to zero. Then, in order to

check that the entries of γ−1 belong to D∞, it suffices to show (taking into account

Lemma 1.7) that the iterated derivatives of (γ−1
ε )

ij
are bounded in Lp(Ω), uniformly with

respect to ε, for any p ≥ 1. This boundedness in Lp(Ω) holds, from the Leibnitz rule for
the operator Dk, because (det γ)γ−1 belongs to D∞, and on the other hand, (det γ+ε)−1

has bounded ‖ · ‖k,p norms for all k, p, due to our hypotheses.

Finally, from the expression γ−1
ε γ = det γ

det γ+ε
I, we deduce Eq. (2.14) by first applying the

derivative operator D and then letting ε tend to zero.

Proposition 2.6 Let F = (F 1, . . . , Fm) be a nondegenerate random vector. Let
G ∈ D∞ and let ϕ be a function in the space C∞

p (Rm). Then for any multiindex
α ∈ {1, . . . ,m}k, k ≥ 1, there exists an element Hα(F,G) ∈ D∞ such that

E [∂αϕ(F )G] = E [ϕ(F )Hα(F,G)] , (2.15)

where the elements Hα(F,G) are recursively given by

H(i)(F,G) =
m∑

j=1

δ
(
G
(
γ−1

F

)ij
DF j

)
, (2.16)

Hα(F,G) = Hαk
(F,H(α1,...,αk−1)(F,G)). (2.17)
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Proof. By the chain rule (Proposition 1.4) we have

〈D(ϕ(F )), DF j〉H =
m∑

i=1

∂iϕ(F )〈DF i, DF j〉H =
m∑

i=1

∂iϕ(F )γij
F ,

and, consequently,

∂iϕ(F ) =
m∑

j=1

〈D(ϕ(F )), DF j〉H(γ−1
F )ji.

Taking expectations and using the duality relationship between the derivative and the
divergence operators we get

E [∂iϕ(F )G] = E
[
ϕ(F )H(i)(F,G)

]
,

where H(i) equals to the right-hand side of Equation (2.16). Equation (2.17) follows by
recurrence. Notice that the continuity of the operator δ (Theorem 1.11), and Lemma 2.5
imply that H(i) belongs to D∞. Equation (2.17) follows by recurrence.

As a consequence, there exists constants β, γ > 1 and integers n, m such that

‖Hα(F,G)‖p ≤ cp,q

∥∥det γ−1
F

∥∥m

β
‖DF‖n

k,γ ‖G‖k,q .

Proof of Theorem 2.4. Equality (2.15) applied to the multiindex α = (1, 2, . . . ,m)
yields

E [G∂αϕ(F )] = E[ϕ(F )Hα(F,G)].

Notice that

ϕ(F ) =

∫ F 1

−∞
· · ·
∫ F m

−∞
∂αϕ(x)dx.

Hence, by Fubini’s theorem we can write

E [G∂αϕ(F )] =

∫
Rm

∂αϕ(x)E
[
1{F>x}Hα(F,G)

]
dx. (2.18)

We can take as ∂αϕ any function in C∞
0 (Rm). Then Equation (2.18) implies that the

random vector F has a density given by

p(x) = E
[
1{F>x}Hα(F, 1)

]
.

16



Moreover, for any multiindex β we have

E [∂β∂αϕ(F )] = E[ϕ(F )Hβ(F,Hα(F, 1)))]

=

∫
Rm

∂αϕ(x)E
[
1{F>x}Hβ(Hα)

]
dx.

Hence, for any ξ ∈ C∞
0 (Rm)∫

Rm

∂βξ(x)p(x)dx =

∫
Rm

ξ(x)E
[
1{F>x}Hβ(F,Hα(F, 1))

]
dx.

Therefore p(x) is infinitely differentiable, and for any multiindex β we have

∂βp(x) = (−1)|β|E
[
1{F>x}Hβ(F,(Hα(F, 1))

]
.

2.1 Properties of the support of the law

Given a random vector F : Ω → Rm, the topological support of the law of F is defined
as the set of points x ∈ Rm such that P (|x − F | < ε) > 0 for all ε > 0. The following
result asserts the connectivity property of the support of a smooth random vector.

Proposition 2.7 Let F = (F 1, . . . , Fm) be a random vector whose components belong
to D1,2. Then, the topological support of the law of F is a closed connected subset of
Rm.

Proof. If the support of F is not connected, it can be decomposed as the union of two
nonempty disjoint closed sets A and B.

For each integer M ≥ 2 let ψM : Rm → R be an infinitely differentiable function
such that 0 ≤ ψM ≤ 1, ψM(x) = 0 if |x| ≥ M , ψM(x) = 1 if |x| ≤ M − 1, and
supx,M |∇ψM(x)| <∞.

Set AM = A ∩ {|x| ≤ M} and BM = B ∩ {|x| ≤ M}. For M large enough we have
AM 6= ∅ and BM 6= ∅, and there exists an infinitely differentiable function fM such that
0 ≤ fM ≤ 1, fM = 1 in a neighborhood of AM , and fM = 0 in a neighborhood of BM .

17



The sequence (fMψM)(F ) converges a.s. and in L2(Ω) to 1{F∈A} as M tends to infinity.
On the other hand, we have

D [(fMψM)(F )] =
m∑

i=1

[
(ψM∂ifM)(F )DF i + (fM∂iψM)(F )DF i

]
=

m∑
i=1

(fM∂iψM)(F )DF i.

Hence,

sup
M

‖D [(fMψM)(F )]‖H ≤
m∑

i=1

sup
M

‖∂iψM‖∞
∥∥DF i

∥∥
H
∈ L2(Ω).

By Lemma 1.7 we get that 1{F∈A} belongs to D1,2, and by Proposition 1.9 this is contra-
dictory because 0 < P (F ∈ A) < 1.

As a consequence, the support of the law of a random variable F ∈ D1,2, is a closed

interval. The next result provides sufficient conditions for the density of F to be nonzero
in the interior of the support.

Proposition 2.8 Let F ∈ D1,p, p > 2, and suppose that F possesses a density p(x)
which is locally Lipschitz in the interior of the support of the law of F . Let a be a point
in the interior of the support of the law of F . Then p(a) > 0.

Proof. Suppose p(a) = 0. Set r = 2p
p+2

> 1. From Proposition 1.9 we know that

1{F>a} 6∈ D1,r because 0 < P (F > a) < 1. Fix ε > 0 and set

ϕε(x) =

∫ x

−∞

1

2ε
1[a−ε,a+ε](y)dy.

Then ϕε(F ) converges to 1{F>a} in Lr(Ω) as ε ↓ 0. Moreover, ϕε(F ) ∈ D1,r and

D(ϕε(F )) =
1

2ε
1[a−ε,a+ε](F )DF.

We have

E (‖D(ϕε(F ))‖r
H) ≤ (E(‖DF‖p

H)
2

p+2

(
1

(2ε)2

∫ a+ε

a−ε

p(x)dx

) p
p+2

.

18



The local Lipschitz property of p implies that p(x) ≤ K|x− a|, and we obtain

E (‖D(ϕε(F ))‖r
H) ≤ (E(‖DF‖p

H)
2

p+2 2−rK
p

p+2 .

By Lemma 1.7 this implies 1{F>a} ∈ D1,r, resulting in a contradiction.

The following example shows that, unlike the one-dimensional case, in dimension m > 1
the density of a nondegenerate random vector may vanish in the interior of the support.

Example Let h1 and h2 be two orthonormal elements of H. Define X = (X1, X2),
X1 = arctanW (h1), and X2 = arctanW (h2). Then, Xi ∈ D∞ and

DXi = (1 +W (hi)
2)−1hi,

for i = 1, 2, and

det γX =
[
(1 +W (h1)

2)(1 +W (h2)
2)
]−2

.

The support of the law of the random vector X is the rectangle
[
−π

2
, π

2

]2
, and the

density of X is strictly positive in the interior of the support. Now consider the vector
Y = (Y1, Y2) given by

Y1 = (X1 +
3π

2
) cos(2X2 + π),

Y2 = (X1 +
3π

2
) sin(2X2 + π).

We have that Yi ∈ D∞ for i = 1, 2, and

det γY = 4(X1 +
3π

2
)2
[
(1 +W (h1)

2)(1 +W (h2)
2)
]−2

.

This implies that Y is a nondegenerate random vector. Its support is the set {(x, y) :
π2 ≤ x2 + y2 ≤ 4π2}, and the density of Y vanishes on the points (x, y) in the support
such that π < y < 2π and x = 0.

Exercises

2.1 Show that if F is a random variable in D2,4 such that E(‖DF‖−8) < ∞, then

DF
‖DF‖2 ∈ Dom δ and

δ

(
DF

‖DF‖2
H

)
=

δ(DF )

‖DF‖2
H

− 2
〈DF ⊗DF,D2F 〉H⊗H

‖DF‖4
H

.
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2.2 Let F be a random variable in D1,2 such that Gk
DF

‖DF‖2H
belongs to Dom δ for any

k = 0, . . . , n, where G0 = 1 and

Gk = δ

(
Gk−1

DF

‖DF‖2
H

)
if 1 ≤ k ≤ n+ 1. Show that F has a density of class Cn and

f (k)(x) = (−1)kE
[
1{F>x}Gk+1

]
,

0 ≤ k ≤ n.

2.3 Set Mt =
∫ t

0
u(s)dWs, where W = {W (t), t ∈ [0, T ]} is a Brownian motion and let

u = {u(t), t ∈ [0, T ]} is an adapted process such that |u(t)| ≥ ρ > 0 for some constant

ρ, E
(∫ T

0
u(t)2dt

)
<∞, u(t) ∈ D2,2 for each t ∈ [0, T ], and

λ := sup
s,t∈[0,T ]

E(|Dsut|p) + sup
r,s∈[0,T ]

E((

∫ T

0

|D2
r,sut|pdt)

p
2 ) <∞,

for some p > 3. Show that the density of Mt, denoted by pt(x) satisfies

pt(x) ≤
c√
t
P (|Mt| > |x|)

1
q ,

for all t > 0, where q > p
p−3

and the constant c depends on λ, ρand p.

2.4 Let F ∈ D3,α, α > 4, be a random variable such that E(‖DF‖−p
H ) <∞ for all p ≥ 2.

Show that the density p(x) of F is continuously differentiable, and compute p′(x).

2.5 Show that the random variable F =
∫ 1

0
t2 arctan(Wt)dt, where W is a Brownian

motion, has a C∞ density.

2.6 Let W = {W (s, t), (s, t) ∈ [0, 1]2} be a two-parameter Wiener process. Show that

sup(s,t)∈[0,1]2 W (s, t) has an absolutely continuous distribution. Show also that the density
is strictly positive in (0,+∞).
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3 Stochastic heat equation

Suppose that W = {W (A), A ∈ B(R2), |A| < ∞} is a Gaussian family of random
variables with zero mean and covariance

E(W (A)W (B) = |A ∩B|.

That is, W is a Gaussian white noise on the plane. Then if we set W (t, x) = W ([0, t]×
[0, x]), for t, x ≥ 0, W = {W (t, x), t ∈ [0,∞), x ∈ [0,∞)} is a two-parameter Wiener
process.

For each t ≥ 0 we will denote by Ft the σ-field generated by the random variables
{W (s, x), s ∈ [0, t], x ≥ 0} and the P -null sets. We say that a random field {u(t, x), t ≥
0, x ≥ 0,∞)} is adapted if for all (t, x) the random variable u(t, x) is Ft-measurable.

Consider the following parabolic stochastic partial differential equation on [0,∞)× [0, 1]:

∂u

∂t
=
∂2u

∂x2
+ b(u(t, x)) + σ(u(t, x))

∂2W

∂t∂x
(3.19)

with initial condition u(0, x) = u0(x), and Dirichlet boundary conditions u(t, 0) =
u(t, 1) = 0. We will assume that u0 ∈ C([0, 1]) satisfies u0(0) = u0(1) = 0.

Equation (3.19) is formal because the derivative ∂2W
∂t∂x

does not exist, and we will replace
it by the following integral equation:

u(t, x) =

∫ 1

0

Gt(x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gt−s(x, y)b(u(s, y))dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)σ(u(s, y))W (dy, ds) , (3.20)

where Gt(x, y) is the fundamental solution of the heat equation on [0, 1] with Dirichlet
boundary conditions:

∂G

∂t
=
∂2G

∂y2
, G0(x, y) = δx(y).

The kernel Gt(x, y) has the following explicit formula:

Gt(x, y) =
1√
4πt

∞∑
n=−∞

{
exp

(
−(y − x− 2n)2

4t

)
− exp

(
−(y + x− 2n)2

4t

)}
. (3.21)
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On the other hand, Gt(x, y) coincides with the probability density at point y of a Brownian
motion with variance 2t starting at x and killed if it leaves the interval [0, 1]:

Gt(x, y) =
d

dy
Ex{Bt ∈ dy,Bs ∈ (0, 1) ∀s ∈ [0, t]}

This implies that

Gt(x, y) ≤
1√
4πt

exp

(
−|x− y|2

4t

)
. (3.22)

Therefore, for any β > 0 we have∫ 1

0

Gt(x, y)
βdy ≤ (4πt)−

β
2

∫
R
e−

β|x|2
4t dx = Cβt

1−β
2 . (3.23)

The solution in the the particular case u0 = 0, b = 0, σ = 1 is

u(t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)W (ds, dy).

This stochastic integral exists and it is a Gaussian centered random variable with variance∫ t

0

∫ 1

0

Gt−s(x, y)
2dyds =

∫ t

0

G2s(x, x)ds <∞,

because G2s(x, x) ≤ Cs−1/2. Notice that in dimension d ≥ 2, G2s(x, x) ∼ Cs−1 and the
variance is infinite. For this reason, the study of space-time white noise driven parabolic
equations is restricted to the one-dimensional case.

In the case σ 6= 0 the stochastic integral is a Itô integral, defined using the isometry
property

E

(∣∣∣∣∫ t

0

∫ 1

0

Gt−s(x, y)σ(u(s, y))W (ds, dy)

∣∣∣∣2
)

= E

(∫ t

0

∫ 1

0

Gt−s(x, y)
2σ(u(s, y))2dyds

)
.

(3.24)

The following result asserts that Equation (3.20) has a unique solution if the coefficients
are Lipschitz continuous.
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Theorem 3.1 Suppose that the coefficients b and σ are globally Lipschitz functions.
Then there is a unique adapted process u = {u(t, x), t ≥ 0, x ∈ [0, 1]} such that for all
T > 0

E

(∫ T

0

∫ 1

0

u(t, x)2dxdt

)
<∞,

and satisfies (3.20). Moreover, the solution u satisfies

sup
(t,x)∈[0,T ]×[0,1]

E(|u(t, x)|p) <∞ (3.25)

for all p ≥ 2 and T > 0.

Proof. Consider the Picard iteration scheme defined by

u0(t, x) =

∫ 1

0

Gt(x, y)u0(y)dy

and

un+1(t, x) = u0(t, x) +

∫ t

0

∫ 1

0

Gt−s(x, y)b(un(s, y))dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)σ(un(s, y))W (dy, ds), (3.26)

n ≥ 0. Using the Lipschitz condition on b and σ and the isometry property of the
stochastic integral with respect to the two-parameter Wiener process (3.24), we obtain

E(|un+1(t, x)− un(t, x)|2)

≤ 2(T + 1)

∫ t

0

∫ 1

0

Gt−s(x, y)
2E
(
|un(s, y)− un−1(s, y)|2

)
dyds.

Now we apply (3.23) with β = 2, and we obtain∫ 1

0

E(|un+1(t, x)− un(t, x)|2)dx

≤ CT

∫ t

0

∫ 1

0

E(|un(s, y)− un−1(s, y)|2)(t− s)−
1
2dyds.
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Hence, ∫ 1

0

E(|un+1(t, x)− un(t, x)|2)dx

≤ C2
T

∫ t

0

∫ s

0

∫ 1

0

E(|un(r, z)− un−1(r, z)|2)(s− r)−
1
2 (t− s)−

1
2dzdrds

= C ′
T

∫ t

0

∫ 1

0

E(|un(r, z)− un−1(r, z)|2)dzdr.

Iterating this inequality yields

∞∑
n=0

sup
t∈[0,T ]

∫ 1

0

E(|un+1(t, x)− un(t, x)|2)dx <∞.

This implies that the sequence un(t, x) converges in L2([0, 1] × Ω), uniformly in t ∈
[0, T ], to a stochastic process u(t, x). The process u(t, x) is adapted and satisfies (3.20).
Uniqueness is proved by the same argument.

Let us now show (3.25). Fix p > 6. Applying Burkholder’s inequality for stochastic
integrals with respect to the Brownian sheet and the boundedness of the function u0

yields

E (|un+1(t, x)|p) ≤ cp (‖u0‖p
∞

+E

((∫ t

0

∫ 1

0

Gt−s(x, y) |b(un(s, y))| dyds
)p)

+E

((∫ t

0

∫ 1

0

Gt−s(x, y)
2σ(un(s, y))2dyds

) p
2

))
.

Using the linear growth condition of b and σ we can write

E (|un+1(t, x)|p) ≤ Cp,T

(
1 + E

((∫ t

0

∫ 1

0

Gt−s(x, y)
2un(s, y)2dyds

) p
2

))
.
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Now we apply Hölder’s inequality and (3.23) with β = 2p
p−2

< 3, and we obtain

E (|un+1(t, x)|p) ≤ Cp,T

(
1 +

(∫ t

0

∫ 1

0

Gt−s(x, y)
2p

p−2dyds

) p−2
2

×
∫ t

0

∫ 1

0

E(|un(s, y)|p)dyds
)

≤ C ′
p,T

(
1 +

∫ t

0

∫ 1

0

E(|un(s, y)|p)dyds
)
,

and we conclude using Gronwall’s lemma.

The next proposition tells us that the trajectories of the solution to the Equation (3.20)
are α-Hölder continuous for any α < 1

4
. For its proof we need the following technical

inequalities.

(a) Let β ∈ (1, 3). For any x ∈ [0, 1] and t, h ∈ [0, T ] we have∫ t

0

∫ 1

0

|Gs+h(x, y)−Gs(x, y)|βdyds ≤ CT,βh
3−β

2 , (3.27)

(b) Let β ∈ (3
2
, 3). For any x, y ∈ [0, 1] and t ∈ [0, T ] we have∫ t

0

∫ 1

0

|Gs(x, z)−Gs(y, z)|βdzds ≤ CT,β|x− y|3−β. (3.28)

Proposition 3.2 Let u0 be a Hölder continuous function of order 1
2

such that u0(0) =
u0(1) = 0. Then, the solution u to Equation (3.20) satisfies

E(|u(t, x)− u(s, y)|p) ≤ CT (|t− s|
p−4
2 + |x− y|

p−2
2 )

for all s, t ∈ [0, T ], x, y ∈ [0, 1], p ≥ 2.

As a consequence, for any ε > 0 the trajectories of the process u(t, x) are Hölder con-
tinuous of order 1/4 − ε in the variable t and Hölder continuous of order 1/2 − ε in the
variable x.
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Proof. We will discuss only the term

U(t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)σ(u(s, y))W (dy, ds).

Applying Burkholder’s and Hölder’s inequalities, we have for any p > 6

E(|U(t, x)− U(t, y)|p)

≤ CpE

(∣∣∣∣∫ t

0

∫ 1

0

|Gt−s(x, z)−Gt−s(y, z)|2|σ(u(s, z))|2dzds
∣∣∣∣

p
2

)

≤ Cp,T

(∫ t

0

∫ 1

0

|Gt−s(x, z)−Gt−s(y, z)|
2p

p−2dzds

)p−2
2

,

because
∫ T

0

∫ 1

0
E(|σ(u(s, z))|p)dzds <∞. From (3.28) with β = 2p

p−2
, we know that this

is bounded by C|x− y| p−6
2 .

On the other hand, for t > s we can write

E(|U(t, x)− U(s, x)|p)

≤ Cp

{
E

(∣∣∣∣∫ s

0

∫ 1

0

|Gt−θ(x, y)−Gs−θ(x, y)|2|σ(u(θ, y))|2dydθ
∣∣∣∣

p
2

)

+ E

(∣∣∣∣∫ t

s

∫ 1

0

|Gt−θ(x, y)|2|σ(u(θ, y))|2dydθ
∣∣∣∣

p
2

}

≤ Cp,T

{∣∣∣∣∫ s

0

∫ 1

0

|Gt−θ(x, y)−Gs−θ(x, y)|
2p

p−2dydθ

∣∣∣∣
p−2
2

+

∣∣∣∣∫ s

0

∫ 1

0

Gt−θ(x, y)
2p

p−2dydθ

∣∣∣∣
p−2
2

}
.

Using (3.27) we can bound the first summand by Cp|t − s| p−6
4 . From (3.23) the second

summand is bounded by∫ t−s

0

∫ 1

0

Gθ(x, y)
2p

p−2dydθ ≤ Cp

∫ t−s

0

θ−
p+2

2(p−2)dθ

= C ′
p|t− s|

p−6
2(p−2) .
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As a consequence,

E(|U(t, x)− U(s, y)|p) ≤ Cp,T

(
|x− y|

p−6
2 + |t− s|

p−6
4

)
,

3.1 Regularity of the probability law of the solution

In order to apply the criterion for absolute continuity, we will first show that the random
variable u(t, x) belongs to the space D1,2.

Proposition 3.3 Let b and σ be C1 functions with bounded derivatives. Then u(t, x) ∈
D1,2, and the derivative Ds,yu(t, x) satisfies

Ds,yu(t, x) = Gt−s(x, y)σ(u(s, y))

+

∫ t

s

∫ 1

0

Gt−θ(x, η)b
′(u(θ, η))Ds,yu(θ, η)dηdθ

+

∫ t

s

∫ 1

0

Gt−θ(x, η)σ
′(u(θ, η))Ds,yu(θ, η)W (dθ, dη)

if s < t, and Ds,yu(t, x) = 0 if s > t.

That is, {Ds,yu(t, x), t ≥ θ} is the solution of the stochastic heat equation

∂Ds,yu

∂t
=

∂2Ds,yu

∂x2
+ b′(u)Ds,yu+ σ′(u)Ds,yu

∂2W

∂t∂x

on [s,∞)×[0, 1], with Dirichlet boundary conditions and initial condition σ(u(s, y))δ0(x−
y).

On the other hand, Proposition 3.3 also holds if the coefficients are Lipschitz continu-
ous. In this case, we replace b′(u(t, x)) and σ′(u(t, x)) by some bounded and adapted
processes.

Proof. Consider the Picard approximations un(t, x) introduced in (3.26). Suppose that
un(t, x) ∈ D1,2 for all (t, x) ∈ [0, T ]× [0, 1] and

sup
(t,x)∈[0,T ]×[0,1]

E

(∫ t

0

∫ 1

0

|Ds,yun(t, x)|2dyds
)
<∞. (3.29)
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Applying the operator D to Eq. (3.26), we obtain that un+1(t, x) ∈ D1,2 and that

Ds,yun+1(t, x) = Gt−s(x, y)σ(un(s, y))

+

∫ t

s

∫ 1

0

Gt−θ(x, η)b
′(un(θ, η))Ds,yun(θ, η)dηdθ

+

∫ t

s

∫ 1

0

Gt−θ(x, η)σ
′(un(θ, η))Ds,yun(θ, η)W (dθ, dη).

Note that

E

(∫ T

0

∫ 1

0

Gt−s(x, y)
2σ(un(s, y))2dyds

)
≤ C1

(
1 + sup

t∈[0,T ],x∈[0,1]

E(un(t, x)2)

)
≤ C2,

for some constants C1, C2 > 0. Hence

E

(∫ t

0

∫ 1

0

|Ds,yun+1(t, x)|2dyds
)

≤ C3

(
1 + E

(∫ t

0

∫ 1

0

∫ t

s

∫ 1

0

Gt−θ(x, η)
2|Ds,yun(θ, η)|2dηdθdyds

))
≤ C4

(
1 +

∫ t

0

sup
η∈[0,1]

∫ t

s

∫ 1

0

(t− θ)−
1
2E(|Ds,yun(θ, η)|2)dθdyds

)
.

Let

Vn(t) = sup
x∈[0,1]

E

(∫ t

0

∫ 1

0

|Ds,yun(t, x)|2dyds
)
.

Then

Vn+1(t) ≤ C4

(
1 +

∫ t

0

Vn(θ)(t− θ)−
1
2dθ

)
≤ C5

(
1 +

∫ t

0

∫ θ

0

Vn−1(u)(t− θ)−
1
2 (θ − u)−

1
2dudθ

)
≤ C6

(
1 +

∫ t

0

Vn−1(u)du

)
<∞,

due to (3.29). By iteration this implies that

sup
t∈[0,T ],x∈[0,1]

Vn(t) < C,
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where the constant C does not depend on n. Taking into account that un(t, x) converges
to u(t, x) in Lp(Ω) for all p ≥ 1, we deduce that u(t, x) ∈ D1,2, and Dun(t, x) converges
to Du(t, x) in the weak topology of L2(Ω;H) (see Lemma 1.7). Finally, applying the
operator D to both members of Eq. (3.20), we deduce the desired result.

Furthermore, if the coefficients b and σ are are infinitely differentiable with bounded
derivatives of all orders, then u(t, x) belongs to D∞.

Set γu(t,x) =
∫ t

0

∫ 1

0
(Ds,yu(t, x))

2 dyds and

Bt,x =

∫ t

0

∫ 1

0

σ2(u(s, y))G2
t−s(x, y)dsdy.

The following theorem asserts the existence and regularity of the density under strong
ellipticity conditions.

Theorem 3.4 Assume that the coefficients b and σ are Lipschitz functions, and |σ(x)| ≥
c > 0 for all x. Then the law of u(t, x) is absolutely continuous for all t > 0 and all
x ∈ (0, 1). On the other hand, if b and σ are infinitely differentiable functions with
bounded derivatives, then u(t, x) has a C∞ density for all (t, x) such that t > 0 and
x ∈ (0, 1).

Proof. Set H = L2([0, 1]). We have∫ t

0

‖Dsu(t, x)‖2
Hds ≥

1

2

∫ t

t−δ

‖Gt−s(x− ·)σ(u(s, ·))‖2
Hds− Iδ, (3.30)

where

Iδ =

∫ t

t−δ

‖
∫ t

s

∫ 1

0

Gt−r(x− z)σ′(u(r, z))Dsu(r, z)W (dr, dz)

+

∫ t

s

∫ 1

0

Gt−r(x− z)b′(u(r, z))Dsu(r, z)dr‖2
Hds.

The first term in the inequality (3.30) can be bounded below by a constant times δ, while
the term Iδ is of order δγ for some γ > 0. Using these ideas it is not difficult to show
that E(gamma−p

u(t,x) <∞ for all p ≥ 2.
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• In [10] Pardoux and Zhang proved that u(t, x) has an absolutely continuous distribution
for all (t, x) such that t > 0 and x ∈ (0, 1), if the coefficients b and σ are Lipschitz
continuous and σ(u0(y)) 6= 0 for some y ∈ (0, 1).

• Bally and Pardoux considered in [2] the Equation (3.20) with Neumann boundary condi-
tions on [0, 1], assuming that the coefficients b and σ are infinitely differentiable functions,
which are bounded together with their derivatives. The main result of this paper says that
the law of any vector of the form (u(t, x1), . . . , u(t, xd)), 0 ≤ x1 ≤ · · · ≤ xd ≤ 1, t > 0,
has a smooth and strictly positive density with respect to the Legesgue measure on the
set {σ > 0}d.

4 Spatially homogeneous SPDEs

We are interested in the following general class of stochastic partial differential equations

Lu(t, x) = σ(u(t, x))Ẇ (t, x) + b(u(t, x)), (4.31)

t ≥ 0, x ∈ Rd, where L denotes a second order differential operator, and we impose the
initial conditions

u(0, x) =
∂u

∂t
(0, x) = 0.

Assumptions:

(H1) The fundamental solutions to Lu = 0 denoted by Γ is a non-negative measure of
the form Γ(t, dy)dt such that Γ(t,Rd) ≤ CT <∞ for all 0 ≤ t ≤ T and all T > 0.

(H2) The noise W is a zero mean Gaussian family W = {W (ϕ), ϕ ∈ C∞
0 (Rd+1)} with

covariance

E(W (ϕ)W (ψ)) =

∫ ∞

0

∫
Rd

∫
Rd

ϕ(t, y)f(x− y)ψ(t, y)dxdydt, (4.32)

where f is a non-negative continuous function of Rd\{0} such that it is the Fourier
transform of a non-negative definite tempered measure µ on Rd.

That is,

f(x) =

∫
Rd

exp(−2iπx · ξ)µ(dξ),
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and there is an integer m ≥ 1 such that∫
Rd

(1 + |ξ|2)−mµ(dξ) <∞.

Then, the covariance (4.32) can also be written, using Fourier transform, as

E(W (ϕ)W (ψ)) =

∫ ∞

0

∫
Rd

Fϕ(s)(ξ)Fψ(s)(ξ)µ(dξ)ds.

The completion of the Schwartz space S(Rd) of rapidly decreasing C∞ functions, endowed
with the inner producrt

〈ϕ, ψ〉H =

∫
Rd

Fϕ(ξ)Fψ(ξ)µ(dξ) =

∫
Rd

∫
Rd

ϕ(x)f(x− y)ψ(y)dxdy

is denoted by H. Notice that H may contain distributions. Set HT = L2([0, T ];H).

By definition, the solution to (4.31) is an adapted stochastic process u = {u(t, x), t ≥

0, x ∈ Rd}, satisfying

u(t, x) =

∫ t

0

∫
Rd

Γ(t− s, x− y)σ(u(t, x))W (ds, dy) +

∫ t

0

∫
Rd

b(u(t− s, x− y))Γ(s, dy).

(4.33)
The stochastic integral appearing in formula (4.33) requires some care because the inte-
grand is a measure. We refer to Dalang [4] for the construction of this integral. The main
ideas are as follows.

4.1 Stochastic integrals

Fix a time interval [0, T ]. The integral of an elementary process of the form

g(s, x) = 1(a,b](s)1A(x)X,

where 0 ≤ a < b ≤ T , A ∈ B(Rd) and X is a bounded an Fa-measurable random variable
is defined as

g ·W = W ((a, b]× A)X.
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This definition is extended by linearity to the set E of all finite linear combinations of
elementary processes. We have

E(|g ·W |2) = E(X2)(b− a)

∫
Rd

1A(x)f(x− y)1A(y)dxdy = ‖g‖2
L2(Ω;HT ). (4.34)

The σ-field on Ω × R+ generated by elements of the form 1(a,b](s)X, is called the pre-
dictable σ-field and denoted by P . The completion of E with respect to the norm of
L2(Ω;HT ) is equal to the class of square integrable H-valued predictable processes:

E = L2(Ω× [0, T ],P , P × dt;H).

The stochastic integral g ·W can be extended to the space L2(Ω;HT ), and the isometry
property (4.34) is preserved.

The following proposition provides a useful example of a random distribution which belongs
to the space L2(Ω;HT ). We need the following condition on the fundamental solution
Γ(t, dx): ∫ T

0

∫
Rd

|FΓ(t)(ξ)|2µ(dξ)dt <∞. (4.35)

Proposition 4.1 Suppose that {Z(t, x), (t, x) ∈ [0, T ]×Rd} is a predictable process,
continuous in L2(Ω), such that

CZ := sup
(t,x)∈[0,T ]×Rd

E(Z(t, x)2) <∞. (4.36)

Then if (4.35) holds, Γ(t, dx)Z(t, x) belongs to L2(Ω;HT ).

Proof. Fix ψ ∈ C∞
0 (Rd) such that ψ ≥ 0, the support of ψ is contained in the unit ball

of Rd and
∫

Rd ψ(x)dx = 1. For n ≥ 1 set ψn(x) = ndψ(nx) and Γn(t) = ψ ∗Γ(t). Then
for each t, Γn(t) ∈ S(Rd). Then the sequence Γn(t, x)Z(t, x) is bounded in L2(Ω;HT ).
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In fact, we have

E

∫ T

0

∫
Rd

|F [Γn(t, x))Z(t, x)](ξ)|2µ(dξ)dt

= E

∫ T

0

∫
Rd

∫
Rd

Γn(t, x)Z(t, x)f(x− y)Γn(t, y)Z(t, y)dt

≤ CZ

∫ T

0

∫
Rd

∫
Rd

Γn(t, x)f(x− y)Γn(t, y)dt

= CZ

∫ T

0

∫
Rd

|FΓn(t)(ξ)|2µ(dξ)dt

≤ CZ

∫ T

0

∫
Rd

|FΓ(t)(ξ)|2µ(dξ)dt <∞.

On the other hand, the sequence Γn(t, x)Z(t, x) converges weakly in L2(Ω;HT ) to
Γ(t, dx)Z(t, x). In fact, for any element ϕ ∈ H, any bounded random variable Y and
any 0 ≤ s ≤ t we have

E

(
Y

∫ t

s

∫
Rd

F [Γn(r, x))Z(r, x)](ξ)Fϕ(ξ)µ(dξ)dr

)
= E

(
Y

∫ t

s

∫
Rd

∫
Rd

Γn(r, x)Z(r, x)f(x− y)ϕ(y)dxdy

)
=

∫ t

s

∫
Rd

Γ(r, dz)

∫
Rd

ψn(w)E(Y Z(r, z + w))(

∫
Rd

ϕ(y)f(z + w − y)dy)dw,

and this converges as n tends to infinity to∫ t

s

∫
Rd

Γ(r, dz)E(Y Z(r, z))

∫
Rd

ϕ(y)f(z − y)dy

because the functions w → E(Y Z(r, z + w)) and w →
∫

Rd ϕ(y)f(z + w − y)dy are
continuous.

Under the assumptions of Proposition 4.1, suppose in addition that

sup
(t,x)∈[0,T ]×Rd

E(|Z(t, x)|p) <∞,
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for some p ≥ 2. Then

E

(∣∣∣∣∫ T

0

∫
Rd

Γ(t, dx)Z(t, x)W (dt, dx)

∣∣∣∣p) ≤ cp(νt)
p
2
−1

×
∫ T

0

(
sup
x∈Rd

E(|Z(t, x)|p)
)∫

Rd

|FΓ(s)(ξ)|2µ(dξ)ds,

where

νt =

∫ t

0

∫
Rd

|FΓ(s)(ξ)|2µ(dξ)ds.

4.2 Existence and uniqueness of solutions

The following theorem gives the existence and uniqueness of a solution for Equation
(4.31) (see Dalang [4]).

Theorem 4.2 Suppose that the fundamental solution of Lu = 0 satisfies Hypothesis
(4.35) for all T > 0. Then the Equation (4.31) has a unique solution u(t, x) which is
continuous in L2 and satisfies

sup
(t,x)∈[0,T ]×Rd

E(|u(t, x)|p) <∞,

for all T > 0 and p ≥ 1.

Example 1. The wave equation. Let Γd the fundamental solution of the wave equation

∂2u

∂t2
−∆u = 0.

We know that

Γ1(t) =
1

2
1{|x|<1},

Γ2(t) = c2(t
2 − |x|2)−1/2

+ ,

Γ3(t) =
1

4π
σt,
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where σt denotes the surface measure on the 3-dimensional sphere of radius t. In particular,
for each t, Γi(t) has compact support. Furthermore, for all dimensions d

FΓd(t)(ξ) =
sin(2πt|ξ|)

2π|ξ|
.

Notice that only in dimensions d = 1, 2, 3, Γd is a measure. Elementary estimates show
that there are positive constants c1 and c2 depending on T such that

c1
1 + |ξ|2

≤
∫ T

0

sin2(2πt|ξ|)
4π2|ξ|2

ds ≤ c2
1 + |ξ|2

.

Therefore, Γd satisfies condition (4.35) if and only if∫
Rd

µ(dξ)

1 + |ξ|2
<∞. (4.37)

Example 2. The heat equation. Let Γ be the fundamental solution to the heat equation

∂u

∂t
− 1

2
∆u = 0.

Then,

Γ(t, x) = (2πt)−d/2 exp

(
−|x|

2

2t

)
and

FΓ(t)(ξ) = exp(−4π2t|ξ|2).
Because ∫ T

0

exp(−4π2t|ξ|2) =
1

4π2|ξ|2
(1− exp(−4π2T |ξ|2)),

we conclude that condition (4.35) holds if an only if (4.37) holds.

Condition (4.37) can be expressed in terms of the covariance function f as follows:

For d = 1, (4.37) always holds.

For d = 2, (4.37) holds if and only if∫
|x|≤1

f(x) log
1

|x|
dx <∞.

For d ≥ 2, (4.37) holds if and only if∫
|x|≤1

f(x)
1

|x|d−2
dx <∞.
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4.3 Regularity of the law

Assume that the coefficients σ and b and C1 functions with bounded derivatives. Then
for any (t, x) ∈ [0, T ] × Rd, the random variable u(t, x) belongs to D1,p for any p ≥ 2.
Moreover, the derivative Du(t, x) is an H-valued process which satisfies the following
linear stochastic differential equation

Dsu(t, x) = Γ(t− s, x− dy)σ(u(s, y))

+

∫ t

s

∫
Rd

Γ(t− r, x− z)σ′(u(r, z))Dsu(r, z)W (dr, dz)

+

∫ t

s

∫
Rd

Γ(t− r, dz)b′(u(r, x− z))Dsu(r, x− z)dr.

Theorem 4.3 Suppose that |σ(z)| ≥ c > 0 for all z. Then, for all t > 0 and x ∈ Rd

the random variable u(t, x) has an absolutely continuous distribution.

Proof. It suffices to show that ‖Du(t, x)‖HT
> 0 almost surely. We have∫ t

0

‖Dsu(t, x)‖2
Hds ≥

1

2

∫ t

t−δ

‖Γ(t− s, x− dy)σ(u(s, y))‖2
Hds− Iδ,

where

Iδ =

∫ t

t−δ

‖
∫ t

s

∫
Rd

Γ(t− r, x− z)σ′(u(r, z))Dsu(r, z)W (dr, dz)

+

∫ t

s

∫
Rd

Γ(t− r, dz)b′(u(r, x− z))Dsu(r, x− z)dr‖2
Hds

≤ 2Iδ,1 + 2Iδ,2
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We have∫ t

t−δ

‖Γ(t− s, x− dy)σ(u(s, y))‖2
Hds =

∫ δ

0

‖Γ(s, x− dy)σ(u(t− s, y))‖2
Hds

=

∫ δ

0

∫
Rd

|F [Γ(s, x− dy)σ(u(t− s, y))(ξ)]|2µ(dξ)ds

=

∫ δ

0

∫
Rd

∫
Rd

Γ(s, x− dy)Γ(s, x− dz)f(y − z)σ(u(t− s, y))σ(u(t− s, z))ds

≥ c2
∫ δ

0

∫
Rd

∫
Rd

Γ(s, x− dy)Γ(s, x− dz)f(y − z)ds

= c2
∫ δ

0

∫
Rd

|FΓ(s)(ξ)|2µ(dξ)ds := c2g(δ).

On the other hand,

E(Iδ,1) =

∫ δ

0

E

(
‖
∫ s

0

∫
Rd

Γ(r, x− z)σ′(u(t− r, z))Dt−su(t− r, z)W (dr, dz)‖2
H

)
ds

= E

∫ δ

0

∫ s

0

∫
Rd

∫
Rd

Γ(r, x− dz)Γ(r, x− dy)f(y − z)

×σ′(u(t− r, z))σ′(u(t− r, y))〈Dt−su(t− r, z), Dt−su(t− r, y)〉Hdydzdrds

≤ ‖σ′‖2
∞ sup

xRd

E(

∫ t

t−δ

‖Dsu(t, x)‖2
H)ds)

×
∫ δ

0

∫
Rd

∫
Rd

Γ(r, x− dz)Γ(r, x− dy)f(y − z)dydzdr

= ‖σ′‖2
∞ sup

xRd

E(

∫ t

t−δ

‖Dsu(t, x)‖2
H)ds)g(δ),

37



and

E(Iδ,2) =

∫ δ

0

E

(
‖
∫ s

0

∫
Rd

Γ(r, dz)b′(u(t− r, x− z))Dt−su(t− r, x− z)dr‖2
H

)
ds

= E

∫ δ

0

∫ s

0

∫
Rd

∫
Rd

Γ(r, dz)Γ(r, dy)b′(u(t− r, x− z))b′(u(t− r, x− y))f(y − z)

×〈Dt−su(t− r, x− z), Dt−su(t− r, x− y)〉Hdydzdrds

≤ ‖b′‖2
∞ sup

xRd

E(

∫ t

t−δ

‖Dsu(t, x)‖2
H)ds)

×
∫ δ

0

∫
Rd

∫
Rd

Γ(r, dz)Γ(r, dy)f(y − z)dydzdr

= ‖b′‖2
∞ sup

xRd

E(

∫ t

t−δ

‖Dsu(t, x)‖2
H)ds)g(δ).

The stationary property of the random field u(t, x) implies thatAδ := E(
∫ t

t−δ
‖Dsu(t, x)‖2

H)ds)

does not depend on x. Hence, we obtain, assuming 1
n
≤ c2g(δ)

2

P

(∫ t

0

‖Dsu(t, x)‖2
Hds <

1

n

)
≤ P

(
Iδ ≥

c2

2
g(δ)− 1

n

)
≤ (

c2

2
g(δ)− 1

n
)−1E(Iδ) ≤ (

c2

2
g(δ)− 1

n
)−12

(
‖b′‖∞ + ‖σ′‖2

∞
)
Aδg(δ).

Therefore

lim
n
P

(∫ t

0

‖Dsu(t, x)‖2
Hds <

1

n

)
≤ 4

c2
(
‖b′‖∞ + ‖σ′‖2

∞
)
Aδ,

which converges to zero as δ tends to zero. Hence,

P

(∫ t

0

‖Dsu(t, x)‖2
Hds = 0

)
= 0.

If the coefficients b and σ are infinitely differentiable with bounded derivatives of all orders,
then for all t ≥ 0 and x ∈ Rd the random variable u(t, x) belongs to the space D∞. Then,
we have the following result on the regularity of the density.

Theorem 4.4 Suppose that there exists a constant γ > 0 such that for all t > 0,∫ t

0

∫
Rd

ds|FΓ(s)(ξ)|2µ(dξ) ≤ Ctγ. (4.38)
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Assume |σ(x)| ≥ c > 0. Then, the law of u(t, x) has a C∞ density for all t > 0 and
x ∈ Rd.

Proof. In order to show this result we need to prove that

E

(∣∣∣∣∫ t

0

‖Dsu(t, x)‖2
Hds

∣∣∣∣−p
)
<∞

for all p ≥ 2. Proceeding as before we get

P

(∫ t

0

‖Dsu(t, x)‖2
Hds < ε

)
≤ P

(
Iδ ≥

c2

2
g(δ)− ε

)
≤ (

c2

2
g(δ)− ε)−pE(Ip

δ ).

As before we can get the following estimates

E(Ip
δ,1) ≤ δp−1

∫ δ

0

E

(
‖
∫ s

0

∫
Rd

Γ(r, x− z)σ′(u(t− r, z))Dt−su(t− r, z)W (dr, dz)‖2p
H

)
ds

≤ cpδ
p−1E

∫ δ

0

∣∣∣∣∣
∫ s

0

∫
Rd

∫
Rd

Γ(r, x− dz)Γ(r, x− dy)f(y − z)

×σ′(u(t− r, z))σ′(u(t− r, y))〈Dt−su(t− r, z), Dt−su(t− r, y)〉Hdydzdr

∣∣∣∣∣
p

ds

≤ cpδ
p−1‖σ′‖2p

∞E((

∫ t

t−δ

‖Dsu(t, x)‖2
Hds)

p)g(δ)p,

and similarly,

E(Ip
δ,2) ≤ cpδ

p−1‖b′‖2p
∞E((

∫ t

t−δ

‖Dsu(t, x)‖2
Hds)

p)g(δ)p.

Set Bp(δ) = E((
∫ t

t−δ
‖Dsu(t, x)‖2

Hds)
p). Then,

P

(∫ t

0

‖Dsu(t, x)‖2
Hds < ε

)
≤ (

c2

2
g(δ)− ε)−pcp(‖b′‖2p

∞ + ‖b′‖2p
∞)δp−1Bp(δ)g(δ)

p.

Suppose that we choose δ in such a way that g(δ) = 1
c2
ε. Then,

P

(∫ t

0

‖Dsu(t, x)‖2
Hds < ε

)
≤ Cpδ

p−1Bp(δ).
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To finish the argument, we need that δ ≤ Cεγ for some γ > 0, and this is possible by
condition (4.38).

Remark 1 Condition (4.38) is satisfied in the case of the wave equation in dimension
1,2,3 and for the heat equation in dimension 1 if (4.37) holds.

Remark 2 Theorems 4.3 and 4.4 generalize those proved in the references [11] and
[12].
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