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Passive Scalar in Turbulent Velocity Field



The Transport Equation

o(t
0 (ﬁt’ ?) = —v(t,x)-VO(t,z), t >0, z € R%:

0(0,z) = by(x);

v=. .. ,vY) eRe d>2.

If each v* is Lipschitz continuous in x, then
0(t, x) = 0o(Xp);
X is the flow of v:
dXg,
dt

=v(t, X)), t>s, X{ =u



Turbulent Transport

What if v is not Lipschitz continuous in z?

e Example — Kolmogorov’s theory: v is Holder ~ 1/3.

e Difficulty — Existence but no uniqueness for the flow equation.

Xz,
7’ =v(t, X)), t>s, X{, =u

e How to find 67
0(t, x) = 0p(X/,) is not true



Regularization
e Introducing viscosity (k-limit):

00" (t, )

Era KAO"(t,z) — v(t,x) - VO (t,x), t >0, v € R%

dX$F =v(t, X5 dt + V2kdw(t), t > s, X[T =z

e Smoothing out v (e-limit):

vt = [ vt (“22) dy

(Gawedzki and Vergassola (2000), E and Vanden Eijnden (2000))



Kraichnan/s Model of Turbulence

Physical Model for v:

e v is a statistically homogeneous, isotropic, and stationary Gaussian vector field with zero
mean and covariance

E(v'(t,2)v(s,y)) = 8(t — 5)CY (z —y).

e For small z, CY(x) ~ C(0)(1 — |x|7),
0<y <2

Mathematical Model for v (Le Jan and Raimond (2002), Baxendale, Harris (1988)):

e The matrix C' is characterized by its Fourier transform:

R A, P b zz*
C(z) = (1 + |2]2) @072 (GW Ta1 (I - W)) 7

e a=0=V-v=0;
e b=0= v=VV for some scalar V.
¢ = b/(a + b)— degree of incompressibility.




e Representation of v:

Vit ) =) oy ()in(t),

k>1

wy(t) are independent standard Gaussian white noises; {0y, k& > 1} is a CONS in He.
o Hp=HYHIZRERY, a,b> 0;
e o} is Holder ~/2.

CY(x—y)= 202(35)02(9)7

Thm (Le Jan, Raimond, 2002) For a suitable class of initial conditions 6y, 0 (t, z)

0(t,z) = / 0o(y) P (X2, € dy|F) (1)
where

—

Xiz(s)=a+ / " (X2 (1)) o dwg (1) .

Le Jan and Raimond have also derived an equation for the measure P (X(”it € dy|.EW),
similar to the Zakai equation of nonlinear filtering.

e  Statistical ("weak” in probabilistic sense) solution of the flow equation.

e Still very little info about 0 (Transport equation is solved in the space of measures, no
uniqueness was established)



Transport Equation as an SPDE

o F=(QF {F}i>0,P), astochastic basis with the usual assumptions.
o (wg(t),k >1,t>0), independent standard Wiener processes on F.

e v divergence-free (incompressible flow=—=- divoy =0 ).

Since the Kraichnan velocity V:

Vilt,e) =Y oj(e)in(t),
k>1
the transport equation is given by

di(t,z) = =Y ow(x) - VO(t,x) o dwy(t).

k

or

do(t,x) = 3C(0)D; D;0(t, x)dt — o}, (x) D;0(t, x)dwy(t)

Notation: D; = %.

Summation convention: summation over a pair of repeating indices.



Stochastic PDEs with Multiplicative Noise;

Basic facts

Consider a stochastic evolution equation

du(t,z) = A(t,z)u(t,z)dt + > M" (t,2) u(t, z)dwy(t),u (0, z) = uo (z)

k=1

where A and M are differential operators, and wy, are independent standard Wiener processes

(H) : A—%MM* is elliptic

If (H) does not hold, one coulld not guarntee that a solution of this equation is square
integrable, i.e. E|ju(t,-)||2s < oo for all t;

Examples:

1. A :%A, M =¢eV, e < 1—elliptic;
2. A :%A, M =V —degenerate elliptic;

3. A :%A, M =eV, ¢ > 1—non-elliptic;
The transport equation

1 . .
di(t,x) = EC’”(O)DiDjQ(t, x)dt — oy (x) D;0(t, x)dwy(t)
is degenerate elliptic!

(Krylov-R., P. Chow, J. Potthoff, B. @ksendal, etc. o-smooth)



A Wiener Chaos Approach to Solving the Stochastic Transport Equation
Wiener chaos:

W(t) = (we(t), k>1, 0<t<T),

{m;(s), i > 1} — CONS in Ly([0,T7]),

&= Jy mi(s)dwi(s).

J= (o=t ik=1)|lol =5, 0f <o)

H_ (k)
£, = sz (W) , where
H,(x)=(-1)" exp{“;} ;i—nn exp{—%}.

Theorem. (Cameron and Martin, 1947)
The collection {&,, o € J} is an orthonormal basis in Lo(Q, FY ,P):
Ifn € Ly(Q, F7',P) and no = E(néa), then
n= Z 770450{
acd

and



The Propagator System

do(t,z) = 3C(0)D; D;0(t, z)dt — o}, (x) D;0(t, z)dwy,(t)
If 0%, 0y are smooth, then the STE has a nice square integrable solution, moreover 6(t, ) =
> ey Balt, ®)8a ().
Define: &,(t) = E(&alF"); £a(0) = I(Ja| = 0).
Fact:
déa(t) = DE&a(t)dW (1),
where

D&, (t) = my (t) v/ aF&a—ix) (1)l is the Maliavin derivative, and o (i, k) is the multi-index
with the components
k . . .
. ! max(a; —1,0), ifi=jand k=1,
) B

aj, otherwise.

By the Ito formula

90,(t, z)

1 ..
— U D.
BT QC (0)D;D;0,(t, )

- Z \/ ko () Do) (8, 2)mi(1);
i,k

000, 2) = bola)I(Ja] = 0)
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Solving the Propagator

Good news: o} do not have to be smooth or even continuous.
la| = 0:

89(0)(75,1’) 1 id

9(0)(0,$) = QO(IE) = 9(0)(t,$) = ']Tte()(l').
o = 0

89%) (t, SL’)

1 ..
=5 GOVD: D0,
- C(0)Di D8 (¢, )

- Ulc( )D;00) (L, x)mi(t); Oy (0, 2) = 0.

Oin(t, v) = _fomZ s) T SUkD Tsbo(x)ds.
In fact, with M, = —Uij,

Z!@a(t,x)|2= Z // /m oMy Toy o My, T, o) Pdss ...

lal=N k1,

11
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dlin L2

do(t,x) = %C’ij(O)DiDjQ(t, x)dt — op(x)Di0(t, x)dwy(t)

Thm (Lototsky and R., Russian Math. Surveys, 2003)
If 6y € L2(Rd>, then:

e For every ¢ € CF°(R?), the random field 0(t,z) = >, . 7 0a(t, 2)&, is a unique strong
solution of the transport equation in that for any test-function ¢,

6.900) = Gop) + 5 | CHO)0. DD (5)ds

t
+ / (0,0}, Dip)dwg(s)
0

e Fort > 0,

16 (E) 17,0y = D 18a(®)1F @) < 160117, a)-
aceJ

e For

d, X7 (s) = ot (X7 (s)) dwy (s) 5 € [0, 8),
X/ (t)==x

(martingale solution), and

0 (t,x) =E (6o (X7 (0)|7")
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Remarks

o EO(t,x) = 0y(t,x). (0 is a multi-index with zero entries)

o E(O(t,2)0(s,y)) = Xacy ball, ©)0a(s, y)-

e By interpolation: ]EH@HL(W) < HQOHILP(M)’ 2 < p < oco. Weighted L, (e.g. Oy(z) = |z|)
are also OK.

o Conservation of energy, E[|0 (¢) |7, za) = [160]17,(ga):

)

e Pathwise solution of the flow equation.
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Totally Turbulent Transport

di(t,z) = vAO(t, z)dt — o) (x)D;0(t, x)dwy(t),

op, k> 1— CONS in Ly(R% R%)<W is space-time white noise
Note: Y., op(x)o](z) diverges.

S-system:

= vAbO,(t,x)

=\ AFol (@) Db ipy (t, T)mi(1);
ik

00,(t, x)
ot

Still solvable, but now

Z HeaHiQ(Rd) =00

acJ
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Weighted Wiener Chaos

ak
Let Q :={q1,¢2, ...}, @ > 0, and ¢* :=1I, ¢, "

Definition. The Q-weighted Wiener Chaos space Ly q(Fy; Ly (R)) is

Loo(F); Ly (Rd)) = {(ua) : Z q*QO‘Hua”iz(Rd) < oo} .
aced
Still write u = ., tuaa
Where this series converges?
Examples:

1. (Obvious) If u(t) = 1+ > ;- fotu(s)dwk(s), then u € Lyg(FV;R) for every Q =
(q1,q2, - - .) so that > k1 g < oo.
2. (Nualart-R., JFA, 1997) If

du(t,z) = Au(t, z)dt + u(t, z)dw(t, x), t>0, z€RY d>2,
then u € Lo g(FF; Ly(R?)) for some Q.
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Theorem (Lototsky-R., Annals of Prob. 2005)

Assume that 6y € Ly(R?) and |0t ()] < C. Let Q be a sequence with g = d;/k%k for some
O0<o<2 If

00,(t, )

= VA

- Z \/ @k}, () D00 (i) (£, ) mi(8);
i,k

then Y, q2a||9a(t)||%2(Rd) < 00
and 0(t,7) = > o, 0a(t, 7)&, satisfies

0 € Lag (F7;C((0,T); Lo(R?)) .

This 0 is called the Wiener Chaos solution of the totally turbulent transport equation
di(t,r) = vAO(t, z)dt — ol (z)D;0(t, x)dwy(t).
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Wiener Chaos Approach

e Computable expressions for the solution and its moments from the S-system.
e New regularity results.

e Possibilities for generalization.

Further Directions

e Anticipating equations.

e Elliptic equations.

e Nonlinear equations.

The main results can be found in:

1. S. Lototsky, B. L. Rozovskii. Passive Scalar Equation in a Turbu-
lent Incompressible Gaussian Velocity Field. Russian Math. Surv.

59 (2004), No.2,

2. S. Lototsky, B. L. Rozovskii. Wiener chaos solutions of linear
stochastic evolution equations. Ann. Probab. (2006, to appear).
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