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REGULARITY OF WEAK SOLUTIONS
TO THE MONGE–AMPÈRE EQUATION

CRISTIAN E. GUTIÉRREZ AND DAVID HARTENSTINE

Abstract. We study the properties of generalized solutions to the Monge–
Ampère equation detD2u = ν, where the Borel measure ν satisfies a condi-
tion, introduced by Jerison, that is weaker than the doubling property. When
ν = f dx, this condition, which we call Dε, admits the possibility of f vanish-
ing or becoming infinite. Our analysis extends the regularity theory (due to
Caffarelli) available when 0 < λ ≤ f ≤ Λ < ∞, which implies that ν = f dx
is doubling. The main difference between the Dε case and the case when f
is bounded between two positive constants is the need to use a variant of the
Aleksandrov maximum principle (due to Jerison) and some tools from convex
geometry, in particular the Hausdorff metric.

1. Introduction

In this paper, we present some results that are extensions of the regularity theory
for generalized solutions of the Monge–Ampère equation detD2u = f , where 0 <
λ ≤ f ≤ Λ < ∞, developed by Caffarelli, [C90], [C91]. We shall assume that
the right-hand side f satisfies a condition, weaker than the doubling property (and
therefore weaker than λ ≤ f ≤ Λ), that was introduced by D. Jerison in a very
interesting paper [J96] in connection with the Minkoswki problem for electrostatic
capacity. We shall call this condition Dε, see Definition 2.6. Jerison claimed that
strictly convex solutions to detD2u = f with f satisfying Dε and u = 0 on the
boundary are C1,α; see [J96, Theorem 7.1]. As a tool, he generalizes a maximum
principle due to Aleksandrov, Theorem 2.8, but the proof of the C1,α estimates is
not included in his paper.

Our purpose in this paper is to elaborate on the condition Dε. We shall first
prove that for global convex functions u in Rn, Dε and doubling coincide, Theorem
3.1. To this end we use a geometric characterization of the doubling property of
Monge–Ampère measures given in [GH00]. We next prove under Dε an extremal
points theorem and a selection lemma having independent interest. These two
results are the main pillars in Caffarelli’s theory as presented in [G01, Chapter
5]. Once these results are established, we obtain strict convexity of generalized
solutions, and as a consequence we prove interior C1,α estimates. Unlike the case
when f is bounded between two constants, under Dε we need to use the Hausdorff
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metric to establish some of the theorems. Our work clarifies some of the claims
made by Jerison and presents the details of the argument.

The paper is organized as follows. Section 2 contains definitions and preliminary
results. The proof that for global convex functions Dε = D1 is contained in Section
3. Section 4 contains the extremal points theorem and as a consequence the strict
convexity, Corollary 4.2. In Section 5 we state and prove some facts concerning
Hausdorff convergence that are needed to prove the selection result in Section 6.
Finally, combining the results in the previous sections, we prove in Section 7 the
C1,α estimates.

2. Preliminaries

We begin this section by reviewing some of the basic theory of the Monge–
Ampère equation.

Given u : Ω→ R, we recall that the normal mapping of u is defined by

∂u(x0) = {p ∈ Rn : u(x) ≥ u(x0) + p · (x− x0), ∀x ∈ Ω};
and if E ⊂ Ω, then we set ∂u(E) =

⋃
x∈E ∂u(x). Note that the normal map of u at

a point x0 is the set of points p that determine supporting hyperplanes to u at x0.
If Ω is open and u ∈ C(Ω), then the family of sets

S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable}
is a Borel σ–algebra. The map Mu : S → R̄ defined by Mu(E) = |∂u(E)| (where
|S| indicates the Lebesgue measure of the set S) is a measure, finite on compact
subsets, called the Monge–Ampère measure associated with the function u. The
convex function u is a weak (Aleksandrov) solution of detD2u = ν if the Monge–
Ampère measure Mu associated with the function u equals the Borel measure ν.

The following lemma will be used to prove the convergence results below. This
is [G01, Lemma 1.2.3]. In fact, this is a special case of a more general result on
weak solutions of k–Hessian equations, see [TW97, Theorem 1.1].

Lemma 2.1. If uk is a sequence of convex functions in Ω such that uk → u
uniformly on compact subsets of Ω, then Muk →Mu weakly, meaning that∫

Ω

f(x) dMuk(x)→
∫

Ω

f(x) dMu(x)

for every continuous function f with compact support in Ω.

In considering the regularity properties of solutions, it is convenient to analyze
the properties of the following sets.

Definition 2.2. Let u : Ω→ R be convex. The cross–sections of u are the (convex)
sets

S(x0, p, t) = {x ∈ Ω : u(x) < u(x0) + p · (x − x0) + t},
where p ∈ ∂u(x0) and t > 0.

The ability to transfer our analysis from a general convex set to a normalized
setting is fundamental to what follows. The theorem below is what allows us to do
this.

Definition 2.3. A convex set Ω is said to be normalized if its center of mass
c(Ω) = 0 and Bαn(0) ⊂ Ω ⊂ B1(0), where αn is a dimensional constant.
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Theorem 2.4 (F. John). Let Ω ⊂ Rn be open, bounded, and convex.
(a) Out of all ellipsoids that contain Ω, there exists one of minimal volume.
(b) There exists an invertible affine transformation T such that T (Ω) is normal-

ized.

Following Jerison [J96, p. 31], we define a dimensionless, normalized distance
invariant under affine transformations.

Definition 2.5. The normalized distance from x ∈ S̄ to the boundary of the convex
set S is

δ(x, S) = min
{
|x− x1|
|x− x2|

: x1, x2 ∈ ∂S and x, x1, x2 are collinear
}
.

If T is an affine transformation, then δ(x, S) = δ(Tx, T (S)); also, if the set S is
normalized, then δ(x, S) ≈ dist(x, ∂S). This distance is continuous in x, and note
that δ(x, S) ≤ 1. For α > 0 and S convex we define αS to be the α–dilation of S
with respect to its standard center of mass.

We are now in a position to define the Dε condition.

Definition 2.6. Let 0 < ε ≤ 1, µ a Borel measure in Ω, and u convex in Ω. The
measure µ is Dε in Ω on the sections of u, or µ ∈ Dε, if∫

S

δ(x, S)1−ε dµ ≤ Cµ
(

1
2S
)

for all sections S of u compactly contained in Ω, that is, S b Ω. By Dε(C) we
denote the measures satisfying Dε with constant C.

Notice that this family of conditions includes the doubling condition µ(S) ≤
Cµ(1

2S), which corresponds to ε = 1. Since δ(x, S) ≤ 1, if µ ∈ Dε0 , then µ ∈ Dε

for all ε < ε0. In particular, if µ is doubling, then it is Dε for all ε. In the
case Mu = µ = f dx, this condition allows for the possibility of f to vanish or
become infinite. This condition also has an extension to the entire domain under the
additional hypothesis that u ∈ C(Ω̄) and vanishes on the boundary. See Lemma 5.9
below.

Remark 2.7. We next derive a formula for an affine change of variables, see [G01, p.
47]. Let T be an invertible affine transformation, Tx = Ax+b for some nonsingular
matrix A and some b ∈ Rn. Suppose u : Ω → R and v(y) = λ−1u(T−1y) where
λ > 0. The affine function l(x) = u(x0) + p · (x − x0) is a supporting hyperplane
to u at x0 if and only if l̄(y) = v(Tx0) + λ−1(A−1)tp · (y − Tx0) is a supporting
hyperplane to v at Tx0. This means that if S = Su(x0, p, t) is a section of u, then
T (S) is a section of v. More precisely, T (S) = Sv(Tx0, λ

−1(A−1)tp, tλ). This also
implies that

1
λ

(A−1)t(∂u(E)) = ∂v(TE),

and hence that

(2.1) Mv(TE) =
1
λn
| detA−1|Mu(E)

for any Borel set E ⊂ Ω. From this formula and the fact that, for any section S,
T (αS) = αT (S), we get that if Mu is Dε in Ω, then Mv is Dε in T (Ω), with the
same constant.
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The following theorem is an extension of a classical maximum principle due to
Aleksandrov, [G01, Theorem 1.4.2]. The advantage of this generalization is that
one can deal, for example, with convex functions u with Mu(Ω) = +∞ for which
the Aleksandrov estimate does not give information.

Theorem 2.8 ([J96, Lemma 7.3]). If Ω is convex and normalized, u ∈ C(Ω̄) is
convex, u|∂Ω = 0, and 0 < ε ≤ 1, then

|u(x0)|n ≤ C(n, ε) δ(x0,Ω)ε
∫

Ω

δ(x,Ω)1−ε dMu

for all x0 ∈ Ω.

We recall the following lemma.

Lemma 2.9 ([G01, Lemma 3.2.1]). Let Ω ⊂ Rn be bounded, convex and open, and
φ a convex function in Ω such that φ ≤ 0 on ∂Ω. If x ∈ Ω and l(y) = φ(x)+p·(y−x)
is a supporting hyperplane to φ at the point (x, φ(x)), then

|p| ≤ −φ(x)
dist(x, ∂Ω)

.

More generally, if Ω̄0 ⊂ Ω, then

∂φ(Ω0) ⊂ B
(

0,
maxΩ0(−φ)
dist(Ω0, ∂Ω)

)
.

As a first consequence of Theorem 2.8, we obtain the following equivalence, which
will be important later.

Proposition 2.10. Let Ω be open, convex, and normalized, u ∈ C(Ω̄), convex and
u|∂Ω = 0. Suppose ∫

Ω

δ(x,Ω)1−ε dMu ≤ CMu(1
2Ω).

Then there exist two constants C1 = C1(n, ε) and C2 = C2(n, ε, C) such that

C1|min
Ω
u|n ≤

∫
Ω

δ(x,Ω)1−ε dMu ≤ C2|min
Ω
u|n.

Proof. The first inequality follows directly from Theorem 2.8 and the fact that
δ(x,Ω) ≤ 1. In fact, for this inequality the hypothesis concerning the integral is not
needed. For the second inequality, we have∫

Ω

δ(x,Ω)1−ε dMu ≤ CMu(
1
2

Ω) ≤ C̃|min
Ω
u|n,

where the second inequality is a consequence of the preceding lemma and the fact
that since Ω is normalized, dist(1

2Ω, ∂Ω) ≥ C(n). �

3. Comparison of D1 and Dε

In this section, we show that if the convex function u is defined on all of Rn
and Mu ∈ Dε, then Mu is doubling. Because the doubling condition implies Dε for
every ε > 0, this means that for globally defined functions, the two conditions are
equivalent. We also provide an example to show that this is not true on bounded
domains.

Theorem 3.1. If u : Rn → R is convex and Mu ∈ Dε for some ε ∈ (0, 1), then Mu
is doubling.
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The proof of this result uses the following characterization of doubling Monge–
Ampère measures on Rn, due to Gutiérrez and Huang [GH00]:

Theorem 3.2 ([G01, Theorem 3.3.5]). Mu = µ is doubling on Rn if and only if
there exist constants 0 < τ, λ < 1, such that for all x0 and t > 0, S(x0, p, τt) ⊂
λS(x0, p, t).

Proof of Theorem 3.1. Let S = Su(x0, p, t) be any section of u. Let T be an affine
transformation that normalizes S, Tx = Ax + b for an invertible matrix A, and
denote T (S) by S∗. Define v(x) = u(T−1x). Then T (Su(x0, p, λt)) = Sv(Tx0, q, λt)
for any λ > 0, where q = (A−1)tp. We also have T (λS) = λT (S) = λS∗.

Let v∗(x) = v(x) − v(Tx0) − q · (x − Tx0) − t. Then ∂v∗ = ∂v − q, and by
the translation invariance of Lebesgue measure Mv∗ = Mv. Also, v∗|∂S∗ = 0. Let
y ∈ S∗\λS∗, where λ < 1 is to be chosen, close to 1.

Since S∗ is normalized, dist(y, ∂S∗) ≤ (1−λ) implies that δ(y, S∗) ≤ Cn(1−λ).
Then, by Theorem 2.8 and Proposition 2.10,

|v∗(y)|n ≤ Cδ(y, S∗)ε
∫
S∗
δ(x, S∗)1−ε dMv∗

≤ C(1− λ)ε|min
S∗

v∗|n

= C(1− λ)εtn.

Therefore v∗(y) ≥ −C(1− λ)ε/n t, meaning that

v(y)− v(Tx0)− q · (y − Tx0) ≥ (1− C(1− λ)ε/n)t.

Choose λ so that the term on the right-hand side is positive. Then choose
0 < τ < 1− C(1 − λ)ε/n.

Therefore,
v(y) ≥ v(Tx0) + q · (y − Tx0) + τt;

so y /∈ Sv(Tx0, q, τt).
This implies that Sv(Tx0, q, τt) ⊂ λS∗. By applying T−1, we get the inclusion

Su(x0, p, τt) ⊂ λSu(x0, p, t). So by Theorem 3.2, Mu is doubling. �

The following example shows that Dε is not equivalent to D1 on bounded do-
mains.

Define the function u : [0, 1]→ R by

u(x) =
{
x log x, 0 < x ≤ 1,
0, x = 0.

This function is continuous on [0, 1], convex, and satisfies Mu = 1
x dx.

Since u is zero on the boundary (i.e., u(0) = u(1) = 0), there are sections of
the form (a, b) where 0 < a can be arbitrarily small, and 9

10 < b < 1. Then
Mu((a, b)) = ln( ba ). Since a can be chosen as small as we like, sections can have
arbitrarily large Mu measure. However, for all such sections (if a < 1

10 ), we have
that 1

2 (a, b) ⊂ ( 9
40 ,

31
40 ), so that Mu((1

2 (a, b)) ≤ ln(31
9 ). Therefore, the measure Mu

is not doubling.
In this one–dimensional setting, all sections are intervals and δ(x, S) can be

calculated explicitly for any section. Some elementary calculations show that Mu
satisfies the D 1

2
condition.
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4. Extremal Points and Strict Convexity

In this section, we prove a Caffarelli–type extremal points theorem for convex
functions u satisfying Mu ∈ Dε. For basic results of convex geometry we refer to
Schneider [Sc93].

Theorem 4.1. Let Ω ⊂ Rn be open, bounded and convex, and let u ∈ C(Ω) be
convex. Suppose Mu ∈ Dε. Assume u ≥ 0 and let Γ = {x ∈ Ω : u(x) = 0}. If Γ
contains more than one point, then Γ has no extremal points in Ω.

Proof. The argument follows Caffarelli’s construction given in [G01, Theorem 5.2.1]
for the case when Mu is bounded between two constants. The main differences
between that proof and the argument here are the use of the Aleksandrov–Jerison
estimate (Theorem 2.8) instead of the classical version, and the need for more care
concerning the measure since the Dε condition applies only to sections and not
general measurable sets.

Suppose, for a contradiction, that x0 ∈ Ω is an extremal point of Γ. Applying
[G01, Lemma 5.1.4] to the set Γ, we have that given δ > 0 there exist a supporting
hyperplane l(x) at some point of ∂Γ (not necessarily x0) and an ε0 > 0 such that

(a) Γ ⊂ {x : l(x) ≥ 0},
(b) diam{x ∈ Γ̄ : 0 ≤ l(x) ≤ ε0} < δ, and
(c) 0 ≤ l(x0) < ε0.

We take δ = ρ < 1
2 dist(x0, ∂Ω), and let x1 be the point at which l(x) is a supporting

hyperplane.
Define

S = {x ∈ Γ : 0 ≤ l(x) ≤ ε0},
Π1 = {x : l(x) = ε0},
Π2 = {x : l(x) = 0},

and for ε1 > 0, the convex set

Γε1 = {x ∈ Ω : u(x) ≤ ε1(ε0 − l(x))}.

We have that S =
⋂
ε1>0 Γε1 , and by the choice of δ, Γε1 ⊂ Ω◦ for all ε1 sufficiently

small. Also, Γε1 is the closure of a section of u in Ω. Now slide Π2 in a parallel
fashion away from Π1 until it touches ∂Γε1 at a point xε1 and let Π3 denote the
resulting plane, i.e.,

Π3 = {x : l(x) = −ρε1}, xε1 ∈ Π3, Γε1 ⊂ {x : −ρε1 ≤ l(x) ≤ ε0},

with ρε1 > 0.
Let uε1(x) = u(x)− ε1(ε0 − l(x)). We have
(a) infΓε1

uε1 < 0,
(b) Γε1 is a section of uε1,
(c) uε1 |∂Γε1

= 0,

(d)
dist(Π2,Π3)
dist(Π1,Π2)

=
ρε1
ε0
→ 0 as ε1 → 0;

and consequently,

lim inf
ε1→0

|uε1(x1)|
| infΓε1

uε1 |
≥ 1.
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Let Tε1 normalize Γε1 and u∗ε1(x) = uε1(T−1
ε1 x). Then Mu∗ε1 ∈ Dε and u∗ε1 is zero

on ∂Γ∗ε1 where Γ∗ε1 = Tε1(Γε1). Then, as above,

|u∗ε1(Tε1x1)|
| infΓ∗ε1

u∗ε1 |
≥ C1 > 0

for ε1 sufficiently small. Proposition 2.10 applied to u∗ε1 on the set Γ∗ε1 then yields

(4.1) |u∗ε1(Tε1x1)|n ≥ Cn1 | inf
Γ∗ε1

u∗ε1 |
n ≥ C

∫
Γ∗ε1

δ(x,Γ∗ε1)1−ε dMu∗ε1 .

To see that we can apply Proposition 2.10 here, we first see that using (2.1) we
have

Mu∗ε1(1
2Γ∗ε1) = Mu∗ε1(1

2Tε1(Γε1)) = Mu∗ε1(Tε1(1
2Γε1))

= | detT−1
ε1 |Muε1(1

2Γε1) = | detT−1
ε1 |Mu(1

2Γε1).

Secondly, again by (2.1) and the invariance of δ under affine transformations, we
get ∫

Γ∗ε1

δ(x,Γ∗ε1)1−ε dMu∗ε1 =
∫

Γε1

δ(y,Γε1)1−ε| detT−1
ε1 | dMu.

Since Γε1 is a section of u and Mu ∈ Dε,∫
Γε1

δ(y,Γε1)1−ε dMu ≤ CMu(1
2Γε1).

Therefore, by canceling the factor | detT−1
ε1 | we get the inequality∫

Γ∗ε1

δ(x,Γ∗ε1)1−ε dMu∗ε1 ≤ CMu
∗
ε1(1

2Γ∗ε1),

which is what we need to apply Proposition 2.10; so (4.1) holds.
The next step is to show that

(4.2) dist(Tε1x1, ∂Γ∗ε1)→ 0, as ε1 → 0.

Let Π∗i denote Tε1Πi for i = 1, 2 and 3. We first prove that as ε1 → 0,

dist(Π∗2,Π∗3)
dist(Π∗1,Π

∗
2)
→ 0.

We have that dist(Π∗1,Π∗2) ≤ dist(Π∗1 ∩ Γ∗ε1 ,Π
∗
2 ∩ Γ∗ε1) ≤ 2, since Γ∗ε1 is normalized.

Then
dist(Π∗2,Π

∗
3)

dist(Π∗1,Π
∗
2)

=
dist(Π2,Π3)
dist(Π1,Π2)

=
ρε1
ε0
→ 0

as ε1 → 0, and hence dist(Π∗2,Π∗3) → 0. Now let ∂Γ∗2 ⊂ ∂Γ∗ε1 be that portion
of the boundary lying between the planes Π∗2 and Π∗3. Let Pε1 ∈ ∂Γ∗2 be the
point such that the line through Tε1x1 ∈ Π∗2 and Pε1 is normal to Π∗2. Then
dist(Tε1x1, ∂Γ∗ε1) ≤ dist(Tε1x1, ∂Γ∗2) ≤ |Tε1x1 − Pε1 | ≤ dist(Π∗2,Π∗3)→ 0.

On the other hand, by Theorem 2.8,

|u∗ε1(Tε1x1)|n ≤ Cδ(Tε1x1,Γ∗ε1)ε
∫

Γ∗ε1

δ(x,Γ∗ε1)1−ε dMu∗ε1 .



2484 C. E. GUTIÉRREZ AND D. HARTENSTINE

From (4.1) above,

|u∗ε1(Tε1x1)|n ≥ C
∫

Γ∗ε1

δ(x,Γ∗ε1)1−ε dMu∗ε1 .

This implies that δ(Tε1x1,Γ∗ε1)ε ≥ C. However, since Γ∗ε1 is normalized,

δ(Tε1x1,Γ∗ε1) ≈ dist(Tε1x1, ∂Γ∗ε1).

This contradicts (4.2), and the proof is complete. �

Corollary 4.2. Let Ω ⊂ Rn be open, bounded and convex. Suppose u ∈ C(Ω̄) is
convex and u = 0 on ∂Ω. Then if Mu ∈ Dε, u is either strictly convex or identically
zero.

Proof. Suppose u is not strictly convex. Then the graph of u contains a line seg-
ment, say L. If (x0, u(x0)) ∈ int(L), then any supporting hyperplane l(x) to u at
x0 must contain L.

Apply Theorem 4.1 to the function u(x)− l(x). This function is nonnegative on
Ω, and the set Γ = {x ∈ Ω : u(x) = l(x)} contains more than one point. Therefore,
Γ has no extremal points inside Ω. So all of its extremal points are in ∂Ω.

Write x0 =
∑m

i=1 λixi, where the xi ∈ ∂Ω are extremal points of Γ, λi > 0, and∑
λi = 1. Then u(x0) = l(x0) =

∑
λil(xi) =

∑
λiu(xi) = 0, since u(xi) = 0.

Then, because x0 is an interior point of Ω and u(x0) = 0, u ≡ 0 by convexity. �

Now that the extremal points theorem has been established for Dε, we may use
the same barrier argument as in [G01, Theorem 5.4.7] to deduce the strict convexity
of functions with nonhomogeneous boundary values. We remark that this theorem
is sharp. See [P78, pp. 81-84] for examples.

Theorem 4.3. Let Ω be bounded, open and convex, and let u ∈ C(Ω̄) be convex.
Suppose Mu ∈ Dε for some ε, and Mu > λ > 0. Then if u = f on ∂Ω, where
f ∈ C1,β(∂Ω) for β > 1− 2

n (n ≥ 3), then u is strictly convex.

5. Some Results about the Hausdorff Metric

In this section we collect the results about Hausdorff convergence needed for the
proof of Lemma 6.1.

Let Kn denote the set of nonempty compact subsets of Rn. In the rest of this
paper, whenever we refer to the convergence of sets, we mean convergence with
respect to the following metric.

Definition 5.1. For K,L ∈ Kn, the Hausdorff metric is defined by

dH(K,L) = max {max
x∈K

min
y∈L
|x− y|,max

x∈L
min
y∈K
|x− y|},

or equivalently by

dH(K,L) = min {λ ≥ 0 : K ⊂ L+ λB1(0), L ⊂ K + λB1(0)}.

We also define the Minkowski support function of a closed convex set K.

Definition 5.2. Let K ⊂ Rn be closed, nonempty and convex. The Minkowski
support function is the map h(K, ·) : Rn → R̄ given by

h(K,u) = sup
x∈K
〈x, u〉.
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We quote the following result, establishing the connection between the Hausdorff
metric and the support function. A convex body is a convex set in Kn.

Theorem 5.3 ([Sc93, Theorem 1.8.11]). For any convex bodies K and L,

dH(K,L) = sup
u∈Sn−1

|h(K,u)− h(L, u)|.

We now collect some properties of the Hausdorff metric that will be used in the
next section. First we present the following theorem, due to Blaschke, see [Sc93,
Theorem 1.8.6].

Theorem 5.4 (Blaschke Selection Theorem). From each bounded sequence of con-
vex bodies, one can select a subsequence converging in the Hausdorff metric to a
convex body.

The next lemma connects convergence in the Hausdorff metric with pointwise
convergence of characteristic functions.

Lemma 5.5. Suppose {Kn}, a sequence of compact convex sets, converges to K.
Then χKn(x)→ χK(x) pointwise for every x 6∈ ∂K.

Proof. By Theorem 5.4, K is compact and convex. If x /∈ K, then x /∈ Kn for n
sufficiently large, since Kn → K.

Suppose x ∈ K◦, and let 0 < ρ < dist(x, ∂K). Then Bρ(x) ⊂ K. Change
the coordinates by a translation so that in the new coordinates x = 0. From now
on, Kn and K represent the translations of the original sets in question. For any
v ∈ Sn−1, K is contained between the parallel planes

{z ∈ Rn : 〈z, v〉 = h(K, v)} and {z ∈ Rn : 〈z, v〉 = h(K,−v)}.

Since Bρ(0) ⊂ K, h(K, v) ≥ ρ for all v ∈ Sn−1. For n ≥ N(ρ), we have that
|h(u,Kn) − h(u,K)| ≤ ρ

2 for all u ∈ Sn−1. Therefore, h(u,Kn) ≥ ρ
2 for any unit

vector u, so that B ρ
2
(0) ⊂ Kn for any n large enough. This shows that 0 ∈ K◦n for

such n, and translating back to the original coordinates, we get that x ∈ K◦n for all
n ≥ N for some N , proving the claim. �

We now prove that if a sequence of convex bodies {Kn} converges to K, then
the sequence { 1

2Kn} converges to 1
2K.

Lemma 5.6. If Kn → K, then 1
2Kn → 1

2K, where 1
2Kn is the dilation of Kn (and

similarly for 1
2K) with respect to its center of mass c(Kn).

Proof. We have the following formulas:

1
2Kn = { 1

2 (c(Kn) + y) : y ∈ Kn},

[c(Kn)]i =
1
|Kn|

∫
Kn

xi dx.

By [Sc93, Theorem 1.8.16], the volume map is continuous in the Hausdorff metric.
In other words, if Sn → S, then |Sn| → |S|. We now show that the center of mass
map is also continuous with respect to the Hausdorff metric on the class of convex
bodies. To prove this we need to demonstrate that

∫
Kn

xi dx →
∫
K xi dx. Since
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{Kn} converges, there exists an R > 0 such that K, Kn ⊂ BR(0) for all n. Then∣∣∣∣∫
Kn

xi dx−
∫
K

xi dx

∣∣∣∣ ≤ ∫
Kn∩Kc

|xi| dx+
∫
K∩Kc

n

|xi| dx

≤ R(|Kn ∩Kc|+ |K ∩Kc
n|)→ 0

as n→∞, since by Lemma 5.5, χKn → χK almost everywhere.
Now let ε > 0. Then there exists N such that n ≥ N implies that K ⊂ Kn+εB1,

Kn ⊂ K + εB1, and |c(Kn) − c(K)| ≤ ε. We need to show that there exists N ′

such that if n ≥ N ′, the following two inclusions hold: 1
2K ⊂

1
2Kn + εB1 and

1
2Kn ⊂ 1

2K + εB1.
Let x ∈ 1

2K. Then x = 1
2 (c(K) + y) for some y ∈ K. The first inclusion

will be proved if, for all n large enough, there is a point zn ∈ 1
2Kn such that

|x− zn| ≤ ε. For each n ≥ N , there is a point z̄n ∈ Kn such that |z̄n − y| ≤ ε. Let
zn = 1

2 (c(Kn) + z̄n) ∈ 1
2Kn. Then

|x− zn| = |
1
2

(c(K) + y)− 1
2

(c(Kn) + z̄n)| ≤ 1
2

(|c(K)− c(Kn)|+ |y − z̄n|) ≤ ε.

The other inclusion is proved by contradiction. If the claim is not true, then there
exist ε > 0 and a subsequence Knj such that 1

2Knj 6⊂ 1
2K+εB1(0). This means that

we can find a sequence of points {xnj} such that xnj ∈ 1
2Knj and dist(xnj ,

1
2K) > ε

for all points in the subsequence. Write xnj = 1
2 (c(Knj ) + x̄nj ) where x̄nj ∈ Knj .

By passing to another subsequence, we can assume that x̄nj → x̄. Then by letting
j →∞, we see that xnj also approaches a limit, namely 1

2 (c(K)+x̄). Theorem 1.8.7
(b) in [Sc93] states that if Kn → K and {xnj} converges to x, where xnj ∈ Knj ,
then x ∈ K. This theorem implies that x̄ ∈ K, and therefore {xnj} converges to a
point in 1

2K. However, this is impossible if dist(xnj ,
1
2K) > ε. �

The next two results in this section concern the convergence of the normalized
distances to the boundaries of convex sets converging in the Hausdorff sense, and
the continuity of sections in the parameter t.

Lemma 5.7. Let {Sj} be a sequence of convex bodies converging to the convex
body S. Then for every x ∈ S◦, δ(x, Sj)→ δ(x, S). In fact, the functions fj(x) =
δ(x, Sj) converge uniformly to f(x) = δ(x, S) on compact subsets of S.

Proof. Let x ∈ S◦. Then dist(x, ∂S) = ρ > 0. Since Sj → S, Lemma 5.5 implies
that x ∈ Sj for all j sufficiently large (depending on ρ). Then for these j, δ(x, Sj)
is defined.

Let l be any line through x. Let x1 and x2 be the endpoints of the segment
l ∩ S̄. Let xj1 and xj2 be the endpoints of the segment l ∩ S̄j , with xj1 being in the
same ray (emanating from x) as x1. We make the claim that xj1 → x1 and xj2 → x2

“uniformly” in the sense that this convergence does not depend on l.
Then

|xj1 − x|
|xj2 − x|

→ |x1 − x|
|x2 − x|

,

and this implies that δ(x, Sj)→ δ(x, S).
We prove the claim by considering two cases. First, consider the case that

|xj1 − x| > |x1 − x|. Let u be the unit vector from x along l, pointing in the
direction of x1. Let Π be a support plane to S at x1; let v be its unit normal (away
from S). Let Πj be the plane parallel to Π that supports Sj at some point. Let
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Rj = dist(Π,Πj). Let θ be the angle between u and v. Then |xj1−x1| ≤ Rj sec θ. To
estimate sec θ, we construct a right triangle with one vertex at x in the following
way. The angle at x is θ, and the sides intersecting at x are given by the rays
emanating from x with directions u and v. The second vertex A is the point in ∂S
where the ray starting at x in the direction v hits ∂S. The third vertex is the point
B lying in the ray from x with direction u that lies in a plane parallel to Π through
A. Then

cos θ =
|x−A|
|x−B| ≥

ρ

diam(S)
> 0.

Hence, there is a number M for which sec θ < M . Therefore, |xj1−x1| ≤MRj . By
Theorem 5.3, Rj ≤ dH(Sj , S) → 0. This is because the number Rj is h(v, Sj) −
h(v, S), where h(·, ·) is the Minkowski support function. This shows that xj1 → x1

at least for those j such that |xj1 − x| > |x1 − x|.
We now consider the other possibility, that |x1 − x| > |xj1 − x|. As before, let

u be a unit vector from x along l pointing in the direction of x1. Let Πj be a
support plane to Sj at xj1 and let vj be its unit normal (pointing away from Sj).
Let Π′j be parallel to Πj and support S at some point. Denote by Rj the distance
between the parallel planes Πj and Π′j . Let θj be the angle between u and vj . Then
|xj1 − x1| ≤ Rj sec θj . For each j we construct a right triangle with vertex x and
sides intersecting at x given by the rays starting at x with directions u and vj . The
second vertex of the triangle, Aj , lies at the end of the side with direction vj and is
in the boundary of Sj . The third vertex, Bj , is found by intersecting the side with
direction u with the plane parallel to Πj that passes through Aj . Then

cos θj =
|x−Aj |
|x−Bj |

≥ ρ/2
diam(S)

> 0.

Then, as in the first case, xj1 → x1 for those j for which |x1 − x| > |xj1 − x|.
For both of the cases considered, the same arguments show the corresponding

result for x2. Combining the two cases, we get that xj1 → x1 and xj2 → x2. Notice
that the convergence does not depend on the particular line l. This allows us to
conclude that δ(x, Sj) → δ(x, S) pointwise for every x ∈ S◦. The claim about
uniform convergence on compact subsets follows, since the only property of the
point x needed in the above argument was its distance from the boundary of S. �

Lemma 5.8. Let u be a convex function defined on a domain Ω. Let S = S(x0, p, t)
be a section of u, with S b Ω. Let ρ > 0. Denote by Sρ the section S(x0, p, t− ρ),
and by Sρ the section S(x0, p, t+ ρ). Then

lim
ρ→0

Sρ = lim
ρ→0

Sρ = S,

where the limits are in the Hausdorff metric.

Proof. Let l(x) = u(x0) + p · (x − x0) + t be the affine function defining S, i.e.,
S = {x ∈ Ω : u(x) < l(x)}. First we show that limρ→0 Sρ = S. For every ρ we have
S ⊂ Sρ; so we only need to prove that, for every ρ0 > 0,

Sρ ⊂ S + ρ0B1(0)

for all ρ sufficiently small. If this is not true, then there exists ρ0 > 0 such that for
each n ∈ N there exist εn < 1

n and a point xn ∈ ∂Sεn ∩(S+ρ0B1(0))c. This implies
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that dist(xn, ∂S) > ρ0. But this leads to a contradiction. Choose a subsequence
xnj → x̄. Then

u(xnj ) = u(x0) + p · (xnj − x0) + t+ εnj
↓ ↓
u(x̄) = u(x0) + p · (x̄− x0) + t.

This means that x̄ ∈ ∂S, but dist(x̄, ∂S) > ρ0. This is a contradiction.
Now we prove that Sρ → S as ρ → 0. Since Sρ ⊂ S for all ρ, we only need to

show that, for all ρ0 > 0,

S ⊂ Sρ + ρ0B1(0)

for all ρ sufficiently small. Again, the proof of this inclusion is by contradiction. If
this does not hold, there exists a ρ0 > 0 such that for all n, there exists εn < 1

n such
that S 6⊂ Sεn + ρ0B1(0). So there is a point xn ∈ S such that xn 6∈ Sεn + ρ0B1(0),
meaning that dist(xn, Sεn) > ρ0. Then we can choose a subsequence xnj → x̄ ∈ S̄.
Each xnj 6∈ Sεnj , and so

l(xnj )− εnj ≤ u(xnj ) < l(xnj ).

Let j → ∞ to conclude that l(x̄) ≤ u(x̄) ≤ l(x̄). This means that x̄ ∈ ∂S. Since
| dist(x̄, Sεnj )−dist(xnj , S

εnj )| ≤ |x̄− xnj |, it follows that dist(x̄, Sεnj ) ≥ ρ0
2 for all

j large enough. Therefore, B ρ0
2

(x̄) ∩ Sεnj = ∅ for large j. However, since x̄ ∈ ∂S,
there is a point z ∈ B ρ0

2
(x̄) such that z ∈ S. This means that u(z) < l(z). So u(z) <

l(z)− εnj for j large enough, implying that z ∈ Sεnj . This is a contradiction. �

Lemma 5.9. Let Ω ⊂ Rn be open, bounded and convex, and let u ∈ C(Ω̄) be convex
with u|∂Ω = 0. Suppose Mu ∈ Dε for some ε ∈ (0, 1]. Then

(5.1)
∫

Ω

δ(x,Ω)1−ε dMu ≤ CMu(1
2Ω),

where C is the Dε constant.

Proof. If u is identically zero, the claim is trivial. Notice that, from Definition 2.6, at
this point we only know that (5.1) holds for all sections S of u compactly contained
in Ω. To prove (5.1), let Dk = {x ∈ Ω : u(x) < −1/k} and notice that since u = 0
on ∂Ω and u is nontrivial, the set Dk is a section of u compactly contained in Ω,
and so (5.1) holds for Dk replacing Ω. Following the argument used in the proof
of the second part of Lemma 5.8, we have that Dk → Ω in the Hausdorff metric as
k →∞. Hence by Lemmas 5.5 and 5.7, we get that χDk(x)δ(x,Dk)→ χΩ(x)δ(x,Ω)
for a.e. x ∈ Ω as k→∞, and so, by Fatou’s lemma,∫

Ω

δ(x,Ω)1−ε dMu ≤ lim inf
∫
χDk(x) δ(x,Dk)1−ε dMu.

Since Dk → Ω, 1
2Dk → 1

2Ω by Lemma 5.6. From Lemma 5.5, we get that
χ 1

2Dk
→ χ 1

2 Ω pointwise a.e. Also, since 1
2Dk → 1

2Ω, we have 1
2Dk ⊂ 3

4Ω for k
sufficiently large. Therefore, χ 1

2Dk
(x) ≤ χ 3

4 Ω(x) ∈ L1(Ω, Mu). So by the domi-
nated convergence theorem, Mu(1

2Dk)→Mu(1
2Ω). This proves the lemma. �
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6. Selection Lemma and a Uniform Height for Sections

In this section we prove two main results that are needed for the regularity
theory appearing in the following section. The first of these concerns the selection
of a convergent subsequence from a sequence of solutions to Dirichlet problems in
normalized domains under the hypotheses of the Dε condition and uniform local
boundedness of the corresponding Monge–Ampère measures. The first application
of this selection result is to establish that if u is zero on the boundary of a normalized
domain Ω and Mu ∈ Dε and Mu does not grow too quickly near the boundary, then
any section of u up to a certain height (depending only on the structure and the
distance the base point of the section is away from ∂Ω) will be compactly contained
inside Ω. These results are the analogues of Lemma 5.3.1 and Theorem 5.3.3 in
[G01].

Lemma 6.1 (Selection Lemma). Let {Ωj}∞1 be a sequence of normalized convex
domains, and let uj ∈ C(Ω̄j) be convex, uj|∂Ωj = 0, with Muj ∈ Dε(C) for all j.
Assume also that Muj is absolutely continuous with respect to Lebesgue measure for
each j with density dj(x) that is locally uniformly bounded, i.e., for each compact
K ⊂ Ωj there exists a constant CK such that dj(x) ≤ CK for a.e. x ∈ K and for
all j. Then if 0 < λ ≤ | infΩj uj| for all j, there exist:

(a) a normalized convex domain Ω0,
(b) u0 ∈ C(Ω̄0), convex, with Mu0 ∈ Dε(C), Mu0 absolutely continuous with re-

spect to Lebesgue measure with density d0(x) locally bounded in Ω0, u0|∂Ω0 =
0, and λ ≤ | inf u0|; and a subsequence of the uj that converges uniformly
on compact subsets to u0.

If, in addition, for each j, there exists xj ∈ Ωj with dist(xj , ∂Ωj) ≥ ε′, and lj(x) a
support plane to uj at xj such that

Sj = {x ∈ Ωj : uj(x) < lj(x) +
1
j
} 6⊂ {x ∈ Ωj : uj(x) < −C̄ε′},

then there exist:
(c) a point x0 ∈ Ω0 such that dist(x0, ∂Ω0) ≥ ε′, and
(d) a support plane l0 to u0 at x0 such that

S0 = {x ∈ Ω0 : u0(x) = l0(x)} 6⊂ {x ∈ Ω0 : u0(x) < −C̄ε′} = T0.

Before starting the proof of this lemma, we make a few remarks.

Remark 6.2. The boundedness condition on the densities dj is necessary (and re-
stricting just the Dε constant is not enough) to guarantee the existence of a uni-
formly convergent subsequence, as the following example demonstrates. For each
positive integer N we can uniquely solve the problem (provided Ω is strictly convex){

detD2u = Ndx,
u|∂Ω = 0.

The density of the measure MuN corresponding to the solution uN is the constant
function N ; so the boundedness condition is not met. Then for any section SN of
uN , MuN(SN ) = N |SN | and MuN(1

2SN ) = N |12SN | =
1

2nN |SN |. Therefore, MuN
is doubling on the sections of uN for all N with the same doubling constant. If Ω is
normalized, Proposition 2.10 and Lemma 5.9 tell us that |minΩ uN |n ≈ N . From
this, one sees that the sequence {minΩ uN} is unbounded, and therefore, {uN}
cannot have a uniformly convergent subsequence.
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Remark 6.3. If a measure µ ∈ Dε, it is possible for µ to have singular part with
respect to Lebesgue measure. Indeed, there exists a measure that is doubling on
intervals in R and that is totally singular with respect to dx. See [St93, p. 40] for
details.

Proof of Lemma 6.1. The domain Ω0 can be produced by the Blaschke Selection
Theorem 5.4. The sequence {Ωj} is a bounded sequence of convex bodies. So it
has a subsequence (which we also denote with {Ωj}) converging in the Hausdorff
metric to a convex body, say Ω0; we can take Ω0 to be the interior of this compact
set. Then, given ρ > 0, for all j sufficiently large we have

Ωj ⊂ Ω0 + ρB1(0) and Ω0 ⊂ Ωj + ρB1(0).

Since each Ωj is normalized, these inclusions imply that Ω0 is as well. This demon-
strates (a).

The proof of the rest of the theorem will be done in stages.
Step 1. The first step in proving (b) is to show that for every compact K b Ω0,
there are positive constants j0(K) and c(K) such that

(6.1) K ⊂ {x ∈ Ωj : dist(x, ∂Ωj) > c(K)}

for all j ≥ j0(K).
Let dist(K, ∂Ω0) = ρ > 0, and let x ∈ K. Translate the coordinates so that x is

now 0. Let Ω̃j = Ωj−x, and Ω̃0 = Ω0−x. Since Ωj → Ω0, there exists J such that if
j ≥ J , then dH(Ωj ,Ω0) < ρ

2 . Since dH is invariant under translations, dH(Ωj ,Ω0) =
dH(Ω̃j , Ω̃0). By Theorem 5.3, for any u ∈ Sn−1, dH(Ω̃j , Ω̃0) ≥ |h(Ω̃j , u)−h(Ω̃0, u)|.
We have that h(Ω̃0, u) ≥ ρ for all unit vectors u, since Bρ(0) ⊂ Ω̃0. Therefore,

ρ

2
≥ |h(Ω̃j , u)− h(Ω̃0, u)| ≥ ρ− |h(Ω̃j , u)|.

This implies that h(Ω̃j , u) ≥ ρ
2 . Therefore, B ρ

2
(0) ⊂ Ω̃j ; translating back we

obtain that B ρ
2
(x) ⊂ Ωj for all j ≥ J . Since x ∈ K was arbitrary, we have that

dist(K, ∂Ωj) ≥ ρ
2 for j sufficiently large.

Step 2. In this step, we prove that |minΩj uj| is bounded above.
Suppose that the sequence of minima is not bounded. Then there is a subse-

quence such that minΩj uj < −j. Then, by Theorem 2.8 and Lemma 5.9,

jn ≤ C
∫

Ωj

δ(x,Ωj)1−ε dMuj ≤ CMuj(1
2Ωj).

This implies that Muj(1
2Ωj)→∞. But we have that Ωj → Ω0. So by Lemma 5.6,

1
2Ωj → 1

2Ω0, so that for large j, 1
2Ωj ⊂ 3

4Ω0. Note also that for large j, 3
4Ω0 ⊂ Ωj .

Hence

Muj(1
2Ωj) ≤Muj(3

4Ω0) =
∫

3
4 Ω0

dj(x) dx,

but these integrals are bounded above by the uniform local boundedness. Therefore
there exists a positive Λ such that |minΩj uj| ≤ Λ for all j.
Step 3. Now we show that for every compact K b Ω0, there is a constant C(K)
such that for every x ∈ K and every p ∈ ∂uj(x),

(6.2) |uj(x)|+ |p| ≤ C(K).
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By the last step, the {uj} are uniformly bounded. Also by virtue of the first step,
ρ > 0 can be chosen so that

Kρ = {x : dist(x,K) ≤ ρ} b Ωj

for j ≥ j0(K). Let 0 6= p ∈ ∂uj(K) for any j ≥ j0(K), say p ∈ ∂uj(x̄), where
x̄ ∈ K. Then

uj(x) ≥ uj(x̄) + p · (x− x̄)

for all x ∈ Ωj . In particular, this is true for x = x̄+ ρω, where |ω| = 1. Then

uj(x̄+ ρω) ≥ uj(x̄) + ρ|p|, implying max
Kρ

uj ≥ min
K

uj + ρ|p|,

and therefore,

|p| ≤
maxKρ uj −minK uj

ρ
<∞,

since by the previous step the uj are uniformly bounded.
Step 4. We now produce the function u0. To begin, we demonstrate that given
K b Ω0, the {uj} are uniformly Lipschitz on K, for j large enough, i.e., we show
that |uj(x)−uj(z)| ≤ C(K)|x−z| for all x, z ∈ K and for all j ≥ j0(K). The proof
of this claim is as in the proof of [G01, Lemma 1.1.6]. Let x ∈ K and p ∈ ∂uj(x).
Then by Step 3, |p| ≤ C(K). For any z ∈ K,

uj(z) ≥ uj(x) + p · (z − x) or uj(z)− uj(x) ≥ −|p| |z − x| ≥ −C(K)|z − x|.
We can reverse the roles of x and z to conclude that |uj(x)− uj(z)| ≤ C(K)|x− z|
for all j ≥ j0(K). In particular, the {uj} are equicontinuous on K.

Therefore, by Arzelà–Ascoli, there exists a uniformly convergent subsequence in
K. Write Ω0 = K1 ∪K2 ∪K3 ∪ · · ·, with K1 b K2 b · · ·. By a diagonal process, we
can extract a subsequence of the uj that converges uniformly on compact subsets
of Ω0. Define u0(x) to be the limit of this subsequence.

Because u0 is the limit of convex functions, it is convex. If x ∈ Ω0, then x ∈ Ωj
for j large. Then, since uj |∂Ωj = 0, uj(x) ≤ 0. By letting j → ∞, we get that
u0(x) ≤ 0. Also, since λ ≤ |min uj| for every j, we have that λ ≤ |min u0|.
Step 5. The next step is to show that u0 ∈ C(Ω̄0) and u0|∂Ω0 = 0. To this end,
we first show that for every η > 0, there is a number j0(η) such that

(6.3) {x ∈ Ωj : dist(x, ∂Ωj) ≥ η} ⊂ {x ∈ Ω0 : dist(x, ∂Ω0) ≥ η

2
},

for all j ≥ j0(η). This can be shown by an argument similar to that in Step 1.
For j ≥ J1, we have that dH(Ωj ,Ω) < η

2 . Let j ≥ J1 and let x ∈ Ωj satisfy
dist(x, ∂Ωj) ≥ η. Define Ω̃j = Ωj − x and Ω̃0 = Ω0− x. This change of coordinates
takes x to the origin, and, as before, we have that dH(Ω̃j , Ω̃0) = dH(Ωj ,Ω0). Then
for any u ∈ Sn−1 (by Theorem 5.3)

η

2
> dH(Ω̃j , Ω̃0) ≥ |h(Ω̃j , u)− h(Ω̃0, u)|.

Since Bη(0) ⊂ Ω̃j , h(Ω̃j , u) ≥ η. Hence, h(Ω̃0, u) ≥ η
2 ; so B η

2
(0) ⊂ Ω̃0. This last

inclusion is equivalent to B η
2
(x) ⊂ Ω0, and (6.3) holds.

We now show that
{x ∈ Ω0 : u0(x) < −ρ} b Ω0

for each ρ > 0.
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Using Theorem 2.8, Proposition 2.10, and Lemma 5.9, we get that

|uj(x)|n ≤ Cδ(x,Ωj)ε
∫

Ωj

δ(y,Ωj)1−εdMuj ≤ CΛnδ(x,Ωj)ε ≤ C̃ dist(x,Ωj)ε.

This implies that |uj(x)|nε ≤ C̃ dist(x,Ωj). So if uj(x) < −ρ
2 , then(ρ

2

)n
ε ≤ C dist(x, ∂Ωj).

In other words, the following inclusion holds:

{x ∈ Ωj : uj(x) <
−ρ
2
} ⊂ {x ∈ Ωj : dist(x, ∂Ωj) ≥ Cρ

n
ε }.

Then by (6.3), for j large enough (depending on ρ),

{x ∈ Ωj : dist(x, ∂Ωj) ≥ Cρ
n
ε } ⊂ {x ∈ Ω0 : dist(x, ∂Ω0) ≥ C

2
ρ
n
ε } ≡ K(ρ).

Therefore, ⋃
j≥j0(ρ)

{x ∈ Ωj : uj(x) <
−ρ
2
} ⊂ K(ρ).

This implies that {x ∈ Ω0 : u0(x) < −ρ} ⊂ K(ρ). This is because if x ∈ Ω0, then
x ∈ Ωj for all j large enough (by Lemma 5.5), and if u0(x) < −ρ, then uj(x) < − ρ2
for all large j. This proves that

lim
x→∂Ω0

u0(x) = 0.

Step 6. The longest and most delicate part of the proof is to show that Mu0 ∈
Dε(C).

Since uj → u0 uniformly on compact subsets, the measures Muj converge to
Mu0 weakly by Lemma 2.1.

We begin by showing that
(i) Mu0 is absolutely continuous with respect to Lebesgue measure, and its

density is locally bounded;
(ii) for each measurable set E with Ē ⊂ Ω0, we have

(6.4) Muj(E)→Mu0(E).

Let K ⊂ Ω0 be a compact set, and let E ⊂ K be a measurable set with |E| = 0.
Consider G0 open such that K ⊂ G0 and Ḡ0 ⊂ Ω0. Given ε > 0, there exists an
open set G ⊂ Ḡ0 such that E ⊂ G and |G| < ε. Let F be an arbitrary closed subset
of E, and let φ ∈ C0(Ω0) be such that φ = 1 in F , φ = 0 on Gc, and 0 ≤ φ ≤ 1.
We have dj(x) ≤ CḠ0

for all j and for a.e. x ∈ Ḡ0; so∫
φdMuj ≤Muj(G) ≤ CḠ0

|G| ≤ CḠ0
ε.

Letting j →∞, we get

Mu0(F ) ≤
∫
φdMu0 < CḠ0

ε,

and consequently Mu0(F ) = 0 for each closed set F ⊂ E. Since the measure Mu0

is regular, we get Mu0(E) = 0, and the absolute continuity of Mu0 follows. To
show that d0 is locally bounded, let K ⊂ Ω0 be a compact set and let Br(x) be a
ball with x ∈ K and r < dist(K, ∂Ω0)/2. Let K ′ be the compact set containing
K and all these balls Br(x) with x ∈ K. We have K ′ ⊂ Ω0. Let ε > 0, and
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consider φ ∈ C0(Ω0) with φ = 1 on Br−ε(x) and φ = 0 on Br(x)c, 0 ≤ φ ≤ 1.
From the local uniform boundedness of dj we have

∫
Br(x) φdj dx ≤ CK′ |Br(x)|,

and then, from the weak convergence,
∫
Br(x) φd0 dx ≤ CK′ |Br(x)|. Consequently∫

Br−ε(x)
d0 dx ≤ CK′ |Br(x)|. Letting first ε → 0 and then r → 0, we get by

differentiation that d0(x) ≤ CK′ for a.e. x ∈ K. We now prove (ii). Let ε > 0,
F ⊂ Ω0 a closed set and let G be open such that F ⊂ G, G ⊂ K ′ with K ′ compact,
K ′ ⊂ Ω0, and |G \ F | ≤ ε. Let f ∈ C0(Ω0) be such that f = 1 on F and f = 0 on
Gc, 0 ≤ f ≤ 1. We write∫

G

f(x) dj(x) dx =
∫
F

dj(x) dx +
∫
G\F

f(x) dj(x) dx

and ∫
G

f(x) d0(x) dx =
∫
F

d0(x) dx +
∫
G\F

f(x) d0(x) dx.

Using the weak convergence of Muj → Mu0 and the locally uniform boundedness
of dj and d0, subtracting the previous identities we get that Muj(F ) → Mu0(F )
as j →∞ for each closed set F ⊂ Ω0. If E is measurable with Ē ⊂ Ω, then we pick
F ⊂ E closed with |E \ F | ≤ ε, and we obtain (6.4) as desired.

To establish that Mu0 ∈ Dε(C), the idea is to approximate S by {Sj}, a sequence
of sections of uj, with the property that Sj → S in the Hausdorff metric. Once the
possibility of this approximation is demonstrated, we will show that this implies
that

(6.5) Muj
(

1
2Sj
)
→Mu0

(
1
2S
)

and

(6.6)
∫
Sj

δ(x, Sj)1−εdMuj →
∫
S

δ(x, S)1−εdMu0.

This will establish the claim, since for all j we have Muj ∈ Dε(C).
Let S be a section of u0, S = S(x0, p, t), S b Ω0. Let l(x) = u0(x0)+p·(x−x0)+t.

Since l(x) < 0 for all x ∈ Ω0 and Ωj → Ω0, it follows that l(x) < 0 for all x ∈ Ωj ,
for j ≥ J0. Then l(x) determines a section Sj of uj in Ωj at some point (slide l(x)
down until it touches the graph of uj at one point, which will be the desired base
point), with some parameter (equal to the distance that l(x) must be lowered). In
other words, Sj = {x ∈ Ωj : uj(x) < l(x)}. By the uniform convergence of the uj
to u0, for any ρ > 0, there exists J1 such that for all j ≥ J1,

u0(x) − ρ ≤ uj(x) ≤ u0(x) + ρ,

for every x ∈ U , where U is an open set satisfying S̄ ⊂ Ū ⊂ Ω0. Take ρ small
enough that Sρ is compactly contained in U , and t− ρ > 0. Then we have

Sρ ⊂ Sj ⊂ Sρ, j ≥ max(J0, J1).

Now by Lemma 5.8, we have that limρ→0 S
ρ = limρ→0 Sρ = S, implying that

limj→∞ Sj = S.
The next step is to prove (6.5). Since Sj → S in the Hausdorff metric, 1

2Sj →
1
2S

by Lemma 5.6. Let ρ > 0. We need to show that |Muj(1
2Sj) −Mu0(1

2S)| < ρ for
all j ≥ J(ρ).
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Let f ∈ C0(S), 0 ≤ f ≤ 1, f ≡ 1 on 1
2S, be such that

(6.7)
∣∣∣∣∫
S

f(x) dMu0 −Mu0(1
2S)

∣∣∣∣ < ρ.

Then by the weak convergence, there exists J1 = J1(ρ) such that if j ≥ J1, then
|
∫
S f(x) dMuj −

∫
S f(x) dMu0| < ρ. Therefore,∣∣∣∣∫

S

f(x) dMuj −Mu0

(
1
2
S

)∣∣∣∣
≤
∣∣∣∣∫
S

f(x)dMuj −
∫
S

f(x) dMu0

∣∣∣∣+
∣∣∣∣∫
S

f(x) dMu0 −Mu0

(
1
2
S

)∣∣∣∣ < 2ρ,

and the claim will follow if |Muj(1
2Sj) −

∫
S f(x) dMuj| < ρ for all j sufficiently

large. We estimate this quantity in the following way:

|Muj(1
2Sj)−

∫
S

f(x) dMuj|

≤ |Muj(1
2Sj)−Muj(

1
2S)|+ |Muj(1

2S)−
∫
S

f(x) dMuj| = I + II.

We begin by examining I:

I ≤
∫
|χ 1

2Sj
(x)− χ 1

2S
(x)| dMuj ≡

∫
fj dMuj .

We want to show that limj→∞
∫
fj dMuj = 0. We have that fj → 0 pointwise

a.e. by Lemma 5.5 (with respect to Mu0; here is where the absolute continuity is
needed) and |fj | ≤ 1 for all j. Since 1

2Sj →
1
2S and 1

2S ⊂ Ω0, there exists a set
A such that 1

2Sj ,
1
2S ⊂ Ā ⊂ Ω0, for all j ≥ J2. By Egorov’s theorem, there is a

set E ⊂ A, with Mu0(E) < ρ, such that fj → 0 uniformly on A \ E. Since fj can
take on the values 0 and 1 only, this means that fj(x) = 0 for all j ≥ J3 and all
x ∈ A \ E. Then∫

fj dMuj =
∫
A

fj dMuj =
∫
E

fj dMuj +
∫
A\E

fj dMuj ≤Muj(E).

By (6.4) we have |Muj(E)−Mu0(E)| ≤ ρ for j ≥ J4, implying that Muj(E) ≤ 2ρ.
Therefore, I ≤ 2ρ for j ≥ max(J1, J2, J3, J4).

We now consider the second integral:

II =
∫
S

f(x) dMuj −Muj
(

1
2S
)

=
∫
S\( 1

2S)

f(x) dMuj .

Letting j →∞, from the weak convergence, (6.4), and (6.7) we get that II < ρ for
j sufficiently large. Combining all of these inequalities, we get (6.5).
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Now we prove (6.6). For j ≥ J0, we have S̄j ⊂ Ω0 and S̄ ⊂ Ωj . We estimate the
difference as follows:∣∣∣∣∣

∫
Sj

δ(x, Sj)1−ε dMuj −
∫
S

δ(x, S)1−ε dMu0

∣∣∣∣∣
≤
∣∣∣∣∣
∫
Sj

δ(x, Sj)1−ε dMuj −
∫
S

δ(x, S)1−ε dMuj

∣∣∣∣∣
+
∣∣∣∣∫
S

δ(x, S)1−ε dMuj −
∫
S

δ(x, S)1−ε dMu0

∣∣∣∣ = I + II.

The integral II goes to 0 by the weak convergence. To estimate I, we write

I =
∣∣∣∣∫ χSj (x)δ(x, Sj)1−ε dMuj −

∫
χS(x)δ(x, S)1−ε dMuj

∣∣∣∣
≡
∣∣∣∣∫ fj(x) dMuj −

∫
f(x) dMuj

∣∣∣∣ ≤ ∫ |fj(x)− f(x)| dMuj.

We claim that |fj − f | ≤ 1 and (fj − f)→ 0 pointwise a.e. (we define δ(x, S) = 0
for x 6∈ S̄). The first assertion is trivial. If x ∈ S, then χSj (x) → χS(x) = 1 by
Lemma 5.5, and δ(x, Sj)→ δ(x, S) by Lemma 5.7. If x 6∈ S̄, then x 6∈ Sj for large j;
so fj(x) = f(x) = 0. This establishes the a.e. convergence. Let A be a measurable
set such that Sj , S ⊂ A b Ω0. By Egorov’s theorem, given δ > 0 there exists E ⊂ A
with Mu0(E) < δ and fj − f → 0 uniformly in A \ E. From (6.4) we have that
Muj(A)→Mu0(A) and Muj(E)→Mu0(E) as j →∞, and so Muj(A) ≤ 2Mu0(A)
and Muj(E) < 2δ for j sufficiently large. In addition, |fj(x) − f(x)| < ε for all
x ∈ A \ E and all j sufficiently large. Then∫

|fj(x)− f(x)| dMuj

=
∫
E

|fj(x)− f(x)| dMuj +
∫
A\E
|fj(x)− f(x)| dMuj

≤Muj(E) + εMuj(A \ E) ≤ 2 δ + 2 εMu0(A),

and hence I → 0. Therefore, (6.6) follows, and Step 6 is complete.
Step 7. Now we will produce the point x0 and the supporting hyperplane with the
desired properties. By hypothesis,

Sj = {x ∈ Ωj : uj(x) < lj(x) +
1
j
} * {x ∈ Ωj : uj(x) < −Cε′} = Tj.

Then there is a point yj ∈ Sj ∩ T cj . Then uj(yj) < lj(yj) + 1
j , and we can assume

uj(yj) = −Cε′. By (6.3), xj ∈ Ω0 and

(6.8) dist(xj , ∂Ω0) ≥ ε′

2
for all j > j0(ε′).

By Theorem 2.8 and Proposition 2.10,

Cε′n = |uj(yj)|n ≤ Cnδ(yj ,Ωj)ε
∫

Ωj

δ(y,Ωj)1−εdMuj ≤ C(n,Λ)δ(yj ,Ωj)ε.

This implies that dist(yj , ∂Ωj) ≥ Cε′
n
ε . So by (6.3), dist(yj,Ω0) ≥ C(n, ε′,Λ) for j

large enough.
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Therefore, for all j sufficiently large, {xj} and {yj} are contained in a compact
subset of Ω0. By passing to subsequences, xj → x0 ∈ Ω0 and yj → y0 ∈ Ω0.
Furthermore, dist(x0, ∂Ω0), dist(y0, ∂Ω0) ≥ C(ε′). This shows statement (c) of the
lemma. Let pj ∈ Rn define lj(x), i.e., lj(x) = uj(xj) + pj · (x − xj). Then since
the xj are away from ∂Ω0, the pj are bounded (Step 3). Choose a subsequence
so that pj → p0. Now uj(x) ≥ uj(xj) + pj · (x − xj) = lj(x) for all x ∈ Ωj . Let
j → ∞ to get u0(x) ≥ u0(x0) + p0 · (x − x0) for all x ∈ Ω0. This means that
l0(x) = u0(x0) + p0 · (x − x0) is a support plane to u0 at x0. Now uj(yj) = −Cε′
for all j, implying that u0(y0) = −Cε′. Also, uj(yj) ≤ lj(yj) + 1

j . Let j → ∞ and
get u0(y0) ≤ l0(y0), so that u0(y0) = l0(y0). Therefore, y0 ∈ S0 ∩ T c0 . This proves
(d), and we are done. �

We now turn to the second main result of this section. Since we now have in
place the extremal points theorem and the selection lemma, the proof follows in
much the same way as in [G01, Theorem 5.3.3]. The proof is by contradiction. If
the statement is not true, there are a sequence of normalized domains Ωj and a
sequence of functions uj defined on those domains that satisfy the hypotheses of
Lemma 6.1. The growth condition in Theorem 6.4 implies that the measures Muj
are locally uniformly bounded.

Further, if Theorem 6.4 is not true, the additional hypotheses of Lemma 6.1
(those concerning (c) and (d)) are also satisfied. As in [G01, Theorem 5.3.3], it
is conclusion (d) that produces the contradiction. This conclusion contradicts the
extremal points theorem. For this result to apply, we need to know that u0 is
not identically zero. This is the reason for the assumption 0 < λ ≤ |minΩj uj| in
Lemma 6.1.

Theorem 6.4. Given a convex, normalized domain Ω in Rn, consider u ∈ C(Ω̄),
convex, with u|∂Ω = 0 and such that Mu ∈ Dε1(C) and is absolutely continuous
with respect to Lebesgue measure. Suppose that the density d(x) of the measure Mu
satisfies the growth condition: d(x) ≤ C1 dist(K, ∂Ω)−β for each K ⊂ Ω compact
and for a.e. x ∈ K, where C1 and β are positive constants; and 0 < λ ≤ | infΩ u|.

Then for each ε > 0, there exists ρ = ρ(ε) such that for all Ω normalized, for all
x0 with dist(x0, ∂Ω) ≥ ε, for all functions u satisfying the above conditions, and for
all supporting hyperplanes l(x) to u at x0, we have that {x ∈ Ω : u(x) < l(x) + ρ}
is compactly contained in Ω.

Moreover, {x ∈ Ω : u(x) < l(x) + ρ} ⊂ {x ∈ Ω : u(x) < −C̄ε}, where C̄ =
C̄(C, ε1, n, λ) and ρ depends only on ε, ε1, n, λ, and the estimate on d(x).

We conclude this section with an additional remark concerning the growth con-
dition in Theorem 6.4. The Dε condition imposes a constraint on the rate at which
the measure can blow up near the boundary of the domain, as the following example
illustrates.

Let Ω = B1(0), let u ∈ C(Ω̄) be convex, and suppose Mu ∈ Dε and Mu =
f(x) dx, where f(x) ≥ dist(x, ∂Ω)−β . Then by Lemma 5.9,∫

B1(0)

δ(x,B1(0))1−ε f(x) dx ≤ C
∫
B 1

2
(0)

f(x) dx <∞.

Since B1(0) is normalized, the left–hand side of the last inequality is larger than
C
∫
B1(0) dist(x, ∂B1(0))1−ε dist(x, ∂B1(0))−β dx, which is not integrable for β ≥

2− ε.
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7. Hölder Continuity of the Gradient

In order to obtain the interior C1,α estimates we will use two technical lemmas
concerning the relationship between the dilation of a normalized domain and the
dilation of a sublevel set. We assume throughout this section that the function u
is not identically zero.

Lemma 7.1 (Compare with [G01, Lemma 5.4.1]). Suppose Ω is a normalized
convex domain, u ∈ C(Ω̄) is convex and u|∂Ω = 0, Mu ∈ Dε(C) and is absolutely
continuous with respect to Lebesgue measure and satisfies the growth condition in
Theorem 6.4, and that u(x0) = minΩ u < −λ < 0. Given 0 < η ≤ 1, define

Ωη = {x ∈ Ω : u(x) < (1− η) min
Ω
u}.

Then there exists a constant ν, 0 < ν < 1, depending on n, ε, the Dε constant C,
and λ, such that 1

2Ω ⊂ νΩ 1
2
, where the dilations are with respect to x0.

The proof of Lemma 7.1 is nearly identical to the proof in [G01], and we omit it.

Lemma 7.2 (See [G01, Corollary 5.4.4]). Suppose that Ω is a normalized con-
vex domain, u ∈ C(Ω̄) is convex and u|∂Ω = 0, Mu ∈ Dε(C) and is absolutely
continuous with respect to Lebesgue measure and satisfies the growth condition in
Theorem 6.4, and u(x0) = minΩ u = −1. Then there exists a constant ν ∈ (0, 1)
such that

Ω ⊂ (2ν)kΩ 1
2k

for k = 1, 2, 3, ..., ν = ν(n, ε, C), where the dilations are with respect to x0.

Proof. The case k = 1 is covered by the previous lemma. The ν in the preceding
result depends on n, ε, the Dε constant C, and minΩ u. Since this minimum is −1,
in this case we can remove the dependence of ν on minΩ u.

Now suppose k = 2. Let T1 normalize Ω 1
2
, and set Ω∗1 = T1(Ω 1

2
). Let v1(x) =

2[u(T−1
1 x) + 1

2 ]. Then by Remark 2.7, Mv1 ∈ Dε(C), and we have that v1|∂Ω∗1 = 0
and minΩ∗1 v1 = v1(T1x0) = −1. Apply the previous lemma to v1 in Ω∗1 to get
1
2Ω∗1 ⊂ ν(Ω∗1) 1

2
. Now

(Ω∗1) 1
2

= {x ∈ Ω∗1 : v1(x) < 1
2 min

Ω∗1
v1} = {x ∈ Ω∗1 : 2[u(T−1

1 x) + 1
2 ] < − 1

2}

= {x ∈ Ω∗1 : u(T−1
1 x) < − 3

4} = T1({x ∈ Ω 1
2

: u(x) < − 3
4}) = T1(Ω 1

4
).

Therefore, ν(T1(Ω 1
4
)) = T1(νΩ 1

4
) contains 1

2 (T1(Ω 1
2
)) = T1(1

2Ω 1
2
). Hence, by

applying T−1
1 , we get 1

2Ω 1
2
⊂ νΩ 1

4
or Ω 1

2
⊂ (2ν)Ω 1

4
. Combining this with the

preceding step, we get
Ω ⊂ (2ν)Ω 1

2
⊂ (2ν)2Ω 1

4
.

In general, let Tk normalize Ω 1
2k

and vk(x) = 2k[u(T−1
k x) + (1− 1

2k )]. As above,
we conclude that Ω 1

2k−1
⊂ (2ν)Ω 1

2k
. �

Theorem 7.3 (Compare with [G01, Theorem 5.4.5]). Let Ω be bounded, open and
convex, and let u ∈ C(Ω̄) be convex, with u|∂Ω = 0. Then if Mu ∈ Dε(C) for some
ε ∈ (0, 1] and is absolutely continuous with respect to Lebesgue measure and satisfies
the growth condition in Theorem 6.4, then u is C1,α in the interior of Ω for some
0 < α < 1.
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Proof. The proof proceeds in a sequence of steps.
Step 1. If Ω is normalized and minΩ u = u(x0) = −1, then u is C1,α at x0.

The point x0 where the minimum is attained is unique by Corollary 4.2. By
Theorem 2.8 and Proposition 2.10, dist(x0, ∂Ω) > ρ, where ρ depends on n, ε, and
the Dε constant; so Bρ(x0) ⊂ Ω. Let x ∈ Ω, x 6= x0. Then there exists an integer
k ≥ 1 such that 2−k ≤ u(x) − u(x0) < 2−k+1. Then, since u(x0) = −1, we get
that u(x) ≥ −(1 − 2−k); so x 6∈ Ω 1

2k
. So by Lemma 7.2, x 6∈ (2ν)−kBρ(x0) =

B ρ

(2ν)k
(x0), and hence |x−x0| ≥ ρ(2ν)−k. We can take ν > 1

2 . So ν = 2−θ for some

θ ∈ (0, 1). Hence |x − x0| ≥ ρ(2−k)1−θ. Since u(x) − u(x0) < 2−k+1, we see that
2−k > u(x)−u(x0)

2 . Therefore,

|x− x0| ≥ ρ(2−k)1−θ > ρ

(
u(x)− u(x0)

2

)1−θ
.

From this, we obtain 0 ≤ u(x) − u(x0) ≤ 2
(

1
ρ

) 1
1−θ |x − x0|

1
1−θ , proving the claim

for this step, since 1
1−θ > 1.

Step 2. If Ω is not necessarily normalized, and minΩ u is not necessarily −1, then
u is C1,α at its minimum x0.

Let T normalize Ω (Tx = Ax + b for an invertible matrix A and some b ∈ Rn),
and define u∗(y) = |minΩ u|−1u(T−1y). Then from Remark 2.7, Mu∗ ∈ Dε(C) in
Ω∗ = T (Ω) and minΩ∗ u

∗ = −1, and this minimum is attained at Tx0. Then by
Step 1 we have that

0 ≤ u∗(y)− u∗(Tx0) ≤ C(ε, n, C) |y − Tx0|α+1.

Let y = Tx. Then

0 ≤ u(x)− u(x0) ≤ C(ε, n, C) |min
Ω
u| |Tx− Tx0|α+1 ,

or
0 ≤ u(x)− u(x0) ≤ C‖A‖α+1 |min

Ω
u| |x− x0|α+1.

Step 3. If Ω is normalized, then u is C1,α in the interior of Ω.
We prove that if dist(x̄, ∂Ω) ≥ ρ, then

|u(x)− lx̄(x)| ≤ C(n, ε, ρ, C, |min
Ω
u|) |x− x̄|α+1,

where lx̄(x) is any support plane to u at x̄. By Theorem 6.4, there exists ρ0 =
ρ0(n, ε, ρ, C, |minΩ u|) such that

Ωx̄,ρ0 ≡ {x ∈ Ω : u(x) < lx̄(x) + ρ0} ⊂ {x ∈ Ω : u(x) < −C̄ρ},
where C̄ = C̄(n, ε, C, |minΩ u|). Let T normalize Ωx̄,ρ0 and let v(x) = u(x)−lx̄(x)−
ρ0. Then v|∂Ωx̄,ρ0

= 0 and v(x̄) = minΩx̄,ρ0
v = −ρ0. Then, by Step 2,

0 ≤ v(x)− v(x̄) ≤ C(ε, n, C) | min
Ωx̄,ρ0

v| ‖A‖1+α |x− x̄|1+α.

Then, since |minΩx̄,ρ0
v| = ρ0, the claim holds if ‖A‖ can be dominated inde-

pendently of x̄, in terms of the structure and ρ only. As shown in [G01, p. 98],
‖A‖ = maxλ−1

i , where the λi are the lengths of the axes of the minimum ellipsoid
of Ωx̄,ρ0 (see Theorem 2.4 (a)), and detA = (λ1)−1 · · · (λn)−1.

Define u∗(x) = | detA| 2n v(T−1x). We claim that |minT (Ωx̄,ρ0 ) u
∗|n is comparable

to Mu∗(1
2T (Ωx̄,ρ0)). Indeed, by Proposition 2.10 and the Dε condition, we have that
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|minT (Ωx̄,ρ0 ) u
∗|n ≤ C

∫
T (Ωx̄,ρ0 )

δ(x, T (Ωx̄,ρ0))1−εdMu∗ ≤ Mu∗(1
2T (Ωx̄,ρ0)). For the

other inequality, we again use Proposition 2.10 and also use the fact that if x ∈
1
2T (Ωx̄,ρ0), then δ(x, T (Ωx̄,ρ0)) ≥ Cn. More precisely,

| min
T (Ωx̄,ρ0 )

u∗|n ≥ C
∫
T (Ωx̄,ρ0 )

δ(x, T (Ωx̄,ρ0))1−ε dMu∗

≥ C
∫

1
2T (Ωx̄,ρ0)

δ(x, T (Ωx̄,ρ0))1−ε dMu∗ ≥ CMu∗(1
2T (Ωx̄,ρ0)).

We have that |minT (Ωx̄,ρ0 ) u
∗|n = | detA|2 ρn0 and (by (2.1))

Mu∗(1
2T (Ωx̄,ρ0)) = | detA|Mu(T−1(1

2T (Ωx̄,ρ0))).

This implies that

| detA|2ρn0 ≈ | detA|Mu
(
T−1

(
1
2T (Ωx̄,ρ0)

))
or

| detA| ≤ Cρ−n0 Mu(T−1(1
2T (Ωx̄,ρ0))) ≤ Cρ−n0 Mu({x ∈ Ω : u(x) < −C̄ρ}).

Since λi ≤ 1, ‖A‖ = max{λ−1
i } = λ−1

j ≤ (λ1)−1 · · · (λn)−1 = detA. Therefore
‖A‖ can be estimated by n, ε, the Dε constant, ρ, |minu| and Mu({x ∈ Ω : u(x) <
−C̄ρ}). This establishes the claim for this step.
Step 4. If Ω is not normalized, then u is C1,α in the interior of Ω.

Let T be an affine transformation that normalizes Ω, and define u∗(y) = u(T−1y)
for y ∈ T (Ω). Now apply Step 3 to u∗ in the normalized domain T (Ω). The
constant appearing in the inequality will also depend on ‖T ‖, which depends on
the eccentricity and volume of Ω. �
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