Bifurcation of the Spring Distribution in a Unit Long Homogeneous Beam

Ryan Behunin

Using the equation for the compliance of linearly elastic unit beam we have
determined the points of bifurcation in a supporting spring distribution. Our beam is
supported at two ends, loaded by some force distribution, f(x), and supported by some
spring distribution, g(x). The deflection of the beam, the compliance, J , is governed by
the force applied to the beam, the displacement vector, w(x), Young’s Modules, and the
spring distribution. For simplicity Young’s Modules has been set to one.
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To formulate the problem we begin by varying the functional, J, with respect to the
displacement vector. Here we must generalize the Euler-Lagrange equation to include
variation with respect to second derivatives.
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We find the equation that the optimal w(x) must satisfy. This equation coupled with
boundary conditions provides w(x). Note that in the variation that [ have conducted to
arrive at the following equation, [ have included a constraint on f(x) in the functional,
J.
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Key to the formulation of this problem is the principal compliance, A. The principal
compliance is a quantity that we find by maximizing the functional with respect

to f(x)the force distribution. It is important to note that the force 1s constrained, and thus,
we maximize the compliance for any force in a set /. In order to optimize the beam we
minimize the principal compliance; carried out by varying the new functional, A, with
respect to the constrained spring distribution. Consequently the structure is now
optimized for any load in the set of forces, F.
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In order to analyze the problem we must know f(x). Varying the functional
classically yields a trivial result, and thus we have to allow f(x) to be a sum of delta
functions. If we allow f(x) to be a sum of delta functions, Eé(.x - x,), the compliance
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can be maximized if the first derivative of the displacement vector vanishes at x,.
However, one delta function is optimal’ f, = 8(x - x,), where f, is the maximizing
f(x) € F. Further through the same reasoning, it can be shown that the optimal spring
distribution is also a sum of delta functions.
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The constraints are as follows
Sa,=x.
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Knowing f(x)and g(x) and using the elastic equation, we see that w(x) is a piecewise
continuous function of @, and X, . In the equation for w(x) below, m+1 (m=0,1,2..) refers
to the segment of the beam. The segments are defined by the positions of the springs. In
this equation total is the total number of forces on the beam, supporting and loading, and
X is the position of the forces.
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This is where we encounter bifurcation. Given a fixed constraint on f(x) the
number and position of the delta functions ing(x) is a function of the constraint, k.
Below is a graph showing spring position as a function of x. It is important to note here
that after the first bifurcation this is a gross simplification of the problem. I have only
allowed for the spring’s positions to change symmetrically, and have restricted their
individual weights to be equal. This example is restricted to four springs, with symmetric
position and equal values for «_, which is reasonable for f =d&(x~1/2). The first
bifurcation occurs when ¢, equals 0.25 (two springs), and the second when o, equals
0.25 (four springs).
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1 studied cases in which involved three springs as well; bifurcation occurred when x was
equal to the magnitude of the force. However, continuing past these two simple examples
has proved computationally rigorous. To analyze the next bifurcation one must
necessarily double the number of unknowns. Due to the sheer size of the principal
compliance, the server has not been able to successfully compute the bifurcation for
several springs.






