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The direction sclectivity of cortical neurons can be accounted for by asymmetric lateral
connections. Such lateral connectivity leads to network dvnamics with characteristic properties

that would distinguish this mechanism for direction selectivity from other possible mechanisms

in neurophysiological experiments. This paper presents a mathematical analysis of a nonlinear

model of direction-selective neurons with asymmetric latcral connections. The resuit of the

analysis is that asymmetrically coupled networks can stabilize stimulus-locked traveling pulse

solutions that are appropriate for the modeling of the responses of direction-selective neurons.

Outside a certain regime of stimulus speeds the stability of these solutions breaks down, and

under certain parameters, gives rise to lurching activity waves with specific spatiotemporal

periodicity. Under other parameters other behaviors have been observed. Only lurching waves

are discussed in this paper; the other behaviors are the subject of future research.

1. INTRODUCTION

While most models of direction selectivity employ feedforward mechanisms, the existence of strong lateral
connectivity among cortical neurons motivates a model employing recurrent neural networks with asymmetric
lateral excitatory or inhibitory connections to account for the properties of direction selective of cortical neurons. It
should be stated that the relative contribution of feedforward and recurrent connectivity to the direction selectivity
of cortical neurons remains an unresolved issue.

This paper presents a mathematical analysis of the nonlinear dynamics that arise in simple nonlinear
neural networks with asymmeiric recurrent connections driven by moving input stimuli. The result is that such
networks have a class of form-stable solutions, stimulus-locked traveling pulses. The amplitude of these stable
traveling pulse solutions depends on the stimulus velocity because of the asymmetric recurrent interactions in the
network and are, therefore, snitable for modeling the activity of direction-selective neurons in the Primary Visual
Cortex. Outside a certain regime of stimulus speed, the stability of the traveling pulse solutions breaks down and
another class of solutions arises, lurching activity pulses. The bifurcation that underlies the transition between
form-stable and lurching wave solutions results from the essentially nonlinear propertics of the network dynamics.
The existence of lurching activity pulses provides an experimentally testable prediction that is very specific for the
explanation of direction selectivity by asymmetric lateral connections.

I. BASIC MODEL

A continuous approximation of the spatially discrete ncuronal dynamics of the Primary Visual Cortex is



(1) T Bulx/ot = —u(x,0 + fo w(x-X) fa(x,0) dx' +b{x1).
Where: u(x.t) is the scalar neural activity distribution characterizing the average activity at time t of an
ensemble of functionally similar neurons that code for stimmulus feature x;
w(x-x') is interaction kernel characterizing the average synaptic connection strength between the neurons
coding position x’ and the neurons coding position x. For section A. the only restriction for the
interaction kernel is that it should allow for solutions with a single excited regime. In section B.
an explicit interaction function will be defined and used.

f is the nonlinear activation function of the neurons

b(x.t} is the stimuius.

The two rightmost terms on the right hand side of the equation are the total input which includes a
feedforward input term ( b(x.t) ) and a feedback term that integrates the recurrent contributions from other laterally
connected nenrons. This model uses dynamic neural fields to model the average behavior of a large ensemble of
DEVTONS.

In the presence of a stimulus with a constant activity profile that moves at a constant velocity v, the
mathematical description of the dynamics can be simplified by using a moving frame of coordinates by changing
the spatial variable to £=x - vt. In this new frame the stimulus is stationary: B(Z) = b(xt) and UE.D) = w(x,1) is
the activity. By the Chain Rule, © du(x,t)/8t = © JUE)/t — Tv SUE,D/GE, and the dynamics become

(@) T AUEHB - v BUED/E = ~UED + o wE-E) FUE,0) dE' + B(E).
For a stationary solution in the moving frame SU(E,1)/8t = 0, so a stationary solution must satisfy
@) AU EE=-UE + o wEE) fUE)) 45 + BE).
The traveling pulse solution driven by the moving stimulus can be found by solving (3). The stability of the
traveling pulse can be studied by perturbing the stationary solution in (2).

In most cases an analytical solution of these equations is impossible due to ponlinearity. However, for the
biologically inspired step function, an analytical solution can be found.

TIL STEP ACTIVATION FUNCTION

For the step activation function, f{z) = 1 when z > 0 and z¢ro otherwise. This form of activation function
approximates the activitics of neurons that, by saturation, are either active or mactive,

Consider a one-ditnensiona! neural field and assume that only a single stationary excited regime with

[U(€) > 0] exists and is located between the points (£, £2). Only neurons inside this regime contribute to the

integral. Because f is constant in this regime, this contribution only depends on the boundary values £ and £,



With the function W(x) satisfying W'{x) = w(x), the spatial shape of U'(E) of the stationary solution obeys the
ordinary differential equation,
@) v AU EVEE = U@+ WEE) ~ WE-E*) + BE).
Treating the boundaries £’y and £, as fixed parameters the solution of this equation can be found. To facilitate
notation let the integral operator O with parameter o = 0 be Ofg(z);a] = Lo* g(m) €*™* dm, where zo = —w for o
< 0 and zo = +oo for « > 0. Define two function F(z) = O{W{z);w0}/ () and G(z) = O[B@)wl/(-t). The
solution to (4) can be written with these two functions as
) U@ =FE-L)-FE-E5) +G6E).

For the boundary points, U'(%,") = (5, = 0 must be satisfied, leading to the transcendental equations

systern,
© -FO)+F& %)= GE.
(N FO -F&-5)=GE),
from which £, & can be determined. To be consistent with initial assumption, it has to be verified that the
solutions U"(£) has only one excited regime between &, £; .
A. Stability of the traveling pulse solution

The stability of the traveling pulse solutions can be analyzed by perturbing the dynamics around the
stationary solution in the moving frame. In this analysis of this section, the only restriction for the interaction
kernel is that it allows for solutions with a single excited regime. To give consideration to the sicp threshold
nonlinearity in the dynamics, both the wave form and the boundary points are perturbed. Also, the perturbation of
the boundary points can be related to the perturbation of the wave form at the boundary points. Based on this, the
eigenvalue equation for the linearized perturbation dynamics are

9)  [KO) - (1+7h) ] [K©) + ¢ (1+1h) | = K& £ K& -1,

where ¢, = dl}*(cii)/d?é for i =1, 2, and the function K{z) defined as K(z) = O[w(z};to/(1+tAj(1+1A)/(—v). From
(9) the eigenvalues (1) can be found numerically. The traveling pulse solution is asymptotically stable only if the
real parts of all eigenvalues that solve (9) are nonpositive. The cigenvalue equation is derived in detail in the next

section on stability analysis.



1. Stability analysis
The stability of the traveling pulse solution is analyzed by perturbing the siationary solution in the moving
coordinate system. Let 8 U(Z,1) be a small perturbation of U'(E). The linearized perturbation dynamics reads
(10) T BEUY/BE - To HEUYEE + BUEL) = 88 W(E-E ) + 85, w(E-E2),
where 8%; for i =1, 2 are the perturbations of the boundary points of the excited regime from the stationary vahtes of
g with & = &~ + 8, satisfying U(£,t) = 0. Note that 85; is not independent of 3U(S,1), and the dependence can be
found through
(1) UE"+8E 1) = U0 + 88 QUG H/E + 05" = 0.

Since U(E™ 1) = SUE ) to the first order, 85 = —SUE 0/c, where ¢ = dU'(£)/d5. Substituting this

back into the perturbed dynamics, the perturbed dynamics with perturbations in U only are derived as
(12) 1 AEUYGt — To HEUWAE + SUED = SUE 0 W& Ve — BUE: 1) wE-& e, .

The stability of (12) can be checked by the time-honored method of wild-guessing, also known as the more
respectable sounding German “ansatz” method of substituting a solution of the form U = ¢ Y(&) into (12)
and deriving the equation for Y(&):

(13) -0 YE+ {1+ YE = YE) wE-8 Ve - Y(E) wE-E)/e

(13) can be solved by first assuming that Y(£,") and Y(&;) are constant, and afterwards giving self-consistent
conditions for the solutions at £, and &, to satisfy. The solution of (13) is then

(14) YO = YEKEE(a (1)) = YE) KEED e (144)),
for which the self-consistent conditions for the solutions at £, and &, are

(15)  YE) = YE) KOV e (142) ) = Y& KE &)/ 0 (1+Th),

(16)  Y(&) = Y& KE & W0 (1+th) ) = Y(E) KO ey (1+Th) ).
For (15) and (16) to have a solution, (9) has to be satisficd.

B. Simulation results of the step activation function model

The mathematical results of section A. can be tested by numerically simulating the model using an

interaction function ( w(x—x’) } given by a difference of two exponential functions:

17y w(x) = a. exp{ k. [x-x,| ) — a; exp(-k; [%-x| ),



where a, and a; are the amplitudes of excitation and inhibition and x, is an offset that causes the network to be
asymmetric and induces the direction sensitivity. This function simulates a receptive field with asymmetric local
excitation and center-surround inhibition. The advantage of using exponentials is that the integration of the
integral operator O can be carried out explicitly, which simplifies subsequent calculations considerably. Also for
the numernical simulation, the stimulus, b(x,1), is a moving bar with constant width and amplitude.
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FIG. 1. Stimulus and activity profile in the step activation func- FKG. 2. Traveling pulse solution and its stability in the step

tion model. Panel (s) shows the stimulus, and panel (b) the activity ~ 2ctivation function model. Panel (a) shows the velocity nming
m(x.£) at the time ¢ for the traveling pulse sofution. The solid fipe  ©urves and the peak amplitude of the traveling pulse. The solid lines
in (b) shows the result from the cakulation, while the circles indi- indicate the theoretical results, Whl!_ﬂ the dms. signify the numerlcal
e the mnerical simulation results, The interaction kernel used fn  Simulation results. The velocity v is normalized by the time con-
this simulation was W(1)=ﬂ,exp{“keix“-foi)—a;em{*krlx—ral) stant of the dynamics m'the unit of rad/'r Panel (b).shows the
with =1, @,=5, k=042, k;=0.1, and xo=3. The stmulus lawgest real parss of the cigenvaluc ) obtained by sulving Ex )
was a moving bar with width = 10 and amplitude /= 2. Notice numericaity. Only solutions corresponding to the negative values of

i . . - this function are form stable. Panel (¢) plots the variations of the
that the activity pro L) has only a single excited regime. o
¢ vity profile u(x.) omy @ ¢ © peak amplitude of the paise. A variance that deviates significantly

from zero signifies a loss of stability of the traveling pulse solu-
tions. The results are consistent with analysis of the eigenvalues in
panet (b}, Also notice that in panel (a} the theoretical peak ampli-
tude fits well the simulation results only inside the stable regime.

Figure 1 plots a snapshot of the activity profile of u(x.t) and stimulus b(x,t) at a time t in the regime where
the traveling puise solution is stable. The simulation results are plotted on top of the analytically calculated profile
u(x,t), and are consistent with the theory. A typo occurred in Fig. 1; a, should be 5 and 4 should be 1, with a.=1
and a5, the weight function is not a Mexican-hat.

Figure 2 shows the peak activity of u(x,t) as a function of the stimmlus speed. Panel (a) shows the speed
tuning curve plotted as the dependence of the peak activity of the traveling pulse as a function of the stimulus
velocity v. The solid line indicates the results from the theoretical solution and the dots indicate the simulation

results. Panel (b) shows the maximum of the real parts of the eigenvalues obtained from (9). For stimntlus velocity

h



outside a certain rapge, this maximum becomes positive indicating a loss of stability of the form-stable solution.
To verify this result the variability of the peak activity over time can be calculated after excluding the initial
(ransients from the simulations. Panel (c) shows the variations as a function of the stimulus velocity. At the
velocities for which the cigenvalues indicate a loss of stability, the variability of the amplitudes suddenly increases.
This indicates that the stationary solution is not time independent amy more, which is consistent with the

interpretation that the form-stable solution loses stability.
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FIG, 3. Traveling pulse and lurching wave in step activation
function model. The colorcoded plots show the spatial-temporal
evohution of the activity 2{x.1). The left panel shows the propaga-
tion of the form-siable peak over tme. The right panel shows the
hurching activity wave that arises when stubility is Jost.

Figure 3 shows the space-time evolution of the activity. The left panel shows the propagation of the form-
stable traveling pulse for medium stimulus speeds. The right panel shows the solution that arises when stability is
Tost. This “lurching wave” solution is characterized by spatiotemporal periodicity that is defined in the moving
coordinate system by U( y + mL,, t + 0T, ) = U(y,1), where L, and T, are constanis that depend on the network
dynamics. These solutions are termed lurching waves because of the periodic discontinuity of the spatiotemporal
evolution of the neural activity. Lurching wave activity also arises in this type of network for other forms of
inferaction kernels or input signals as well as for other types of threshold functions [1].

IV. CONCLUSIONS

This paper has presented a mathematical analysis of a class of models that account for direction selectivity
by asymmetric lateral connections between cortical neurons. Given the large number of recurrent connections in
the visual cortex, it is plausible that lateral connections play an important role for the realization of direction
selectivity [2,3]. The proposed recurrent mechanism for direction selectivity exploits a kind of “resonance”
between the tendency of the network to stabilize a traveling pulse solution with characteristic speed and the

incoming time-dependent stimulus activity.



One result of this analysis is that such recurrent models, for a certain regime of stimulus speeds, have
traveling pulse solutions that are form stable and move with the same speed as the stimulus. Such sohrtions are
termed stimulus-locked traveling puises. In the stationary case, these sotutions have space-time characteristics that
are also compatible with other models for direction selectivity, e.g.. motion encrgy models with feedforward
structure, or models with linear feedback [1]. In particular, the recarrent mechanism analyzed in this model can
account for biologically realistic degrees of velocity tuning in cortical neurons [4]. The preferred speed of the
neurons in such tecurrent models is determined by the network structure. Speed tuning analyzed in this nonlinear
model arises because, for sufficiently strong interaction, the network tends to stabilize a traveling peak solution
that “locks” to the moving activity peak of the stimulus. For the stimulus-locked traveling pulse solution the
propagation speed is given by the stimulus. This solution becomes unstable if this locking 1s lost.

The stability analysis shows that the traveling pulse solution is stable only within a certain regime of
stimulus speeds. At the borders of this regime a Hopf bifurcation arises and the stimulus-locked solution becomes
unstable. Such speed-dependent bifurcations cannot arise in the classical feedforward models or in networks with
tinear feedback. For such networks the solutions are cither always stable or the actwork is unstable [1].

One result of the simulation is that the loss of stability of the stimulus-locked solution is frequently
accompanied by the formation of lurching activity pulses. Lurching activity has been described in brain slice
experiments [5,6] and in studies with artificial spiking networks withowt time-dependent inpat signals {7.8]. The
simulation results imply that spiking neurons are not necessary for the generation of lurching activity waves if a
moving stimulus is present. Such lurching waves cannot be produced by a feedforward network, in which the
output of the network is always phase locked to the stitoudus. Moreover, there is no stability issue in feedforward
networks. Therefore, the bifurcation observed in recurrent networks cannot appear in fecdforward networks
making these solutions difficult to accounted for by classical models of direction selectivity.

A final conclusion from the analysis is that the observation of lurching activity waves in populations of
direction-selective neurons in the visual cortex would be a strong indicator for the relevance of the recurrent
mechanism for direction selectivity discussed in this paper. Lurching waves and the related Hopf bifurcations

might be experimentally observable by the recording from populations of direction sclective neurons.



A note on future research. This paper, like the paper by X. Xie and M. A. Giese [1] it has followed, only
discusses the breakdown of the stable stimulus-locked traveling pulses into unstable lurching waves. However, Dr.
Xie and Dr. Giese’s paper is incomplete. The network dynamics are much richer than presented in their paper.
When the simulations were run under different parameters than those of Dr. Xic and Dr. Giese’s paper, the stable
pulse was observed to breakdown into unstable waves very different from the lurching wave. Besides becoming a
Turching wave, the stable pulse was seen to permanently excite periodic areas of coriex. This created dynamics that
seemn 10 be somewhere between a stable pulse and a lurching wave, where there was simultaneously a stable pulse
and lurches between stationary areas of excitation. The behavior of these and other unstable solutions and the
conditions under which they arise are the next step in my research and will hopefully give a complete analysis of
the nonlinear dynamics of direction-selectivity in the primary visual cortex.
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