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1 Introduction and the existence of GJR-GARCH

It has been observed that the variance of log returns of stock values is not constant
and it describes the volatility of the market. Engle (1982) and Bollerslev (1986)
introduced the GARCH(1, 1) model to model the volatility in time series data.
They assume that the log returns satisfy the equations

(1.1 Yp = Ok€r, —00 <k <00
and
(1.2 o} =w+ayl_ +Pos_,, —oo<k<oo,

where (w, o, §) is the parameter of the process. It is assumed that the errors
(innovations) eg, —00 < k < 00 are independent identically distributed random
variables. Nelson (1990) found the necessary and sufficient condition for the
existence of (yx,0%), —00 < k < oo. Lumsdaine (1996) used the quasi-maximum
likelihood method to estimate the parameters. '

Glosten, Jagannathan and Runke (1993) modified the GARCH(1, 1), giving
larger weight to negative returns in the volatility. In the GJR-GARCH(1,1),
(1.2) is replaced by

(1.3) ot = w+ oy I {gr-1 < 0} + ooyt I{yk—1 > 0} + Boj_1,
—00 < k < oc,where 8 = (w, ay, ag, 3) is the parameter of the process.

We assme that
(1.4) w>0,0>0,00>0anday 20

and

15) ex — oo < k < oo are independent identically
1.5
distributed random variables.

Using the recursion in (1.3) we get
o? = w4 oyt H{ye-r < 0} + i I{ye—1 > 0} + Boii_y
(16) = ) alﬁi_lgzwlf{ék——l < 0} “+ agﬁi_laiwlf{ék_l > 0} + ﬁazwl
=Wt ﬁdz—} + ﬂk—iaﬁ—la

where
N1 = Q’lﬁi_ll{ék_l < O} + Qgﬁi_lf{ﬁk_g > 0}



Using the recursion in {1.3) backwards we get
0% = w4 Me-10%1
= w + N1 (W + Th-20%_2)
=w+ Whk-1+ ’fikwmk—zU%m?
(1.7) = W+ Wkt + M1 "e—2{w + Thk—3) 073

=W+ W1 + WNk—1Tk—2 + Tfkwlﬂk—?"’?kmSO'i..g

= W+ W1 + W17k T o0 T TR—1 Tk-NOp_ -
If there is a solution it must be in the form of
oo J
ai =W \:1 -+ ZH?}k_z] .
d=1 4=l
Our first result gives a condition for the existence of o
Theorem 1.1 If Elogne < 0, then
o«
p{uzﬂn_i < oo} 1
i=1 g=1

PrROOF: Let v = Elogno. By the Law of Large Numbers (cf. Durrett (1996))
we have
1
J

The Strong Law of Large Numbers means that there exists a random variable Jo
such that

i
Zlog n-; —+ < almost surely.

=1

> logn-i < %3} if j 2> jo.

i=1
This yields
e o0 j
ST =S (s )
j=1 d=1 3=1 i=1
0 J o 2
= exp ( log n_z) + Z exp (Z log sz)
i=1 i=1 J=jo 1=1
Jo j
< Zexp (Z log mz—) + Z exp (53)
=1 i=1 g=do

Since 0 < €7/? < 1 by the convergence of the geometric series we conclude

- 0
A <
Eexp(zg) 00,




completing the proof of Theorem 1.1.

Using Theorem 1.1 we have a necessary condition for the existence of a unige
solution of (1.3).

Theorem 1.2 If v = Elogng < 0, then

ol =w {1 *”iﬁ”k—i}

je=l g=1

is the unique stationary solution of GJR-GARCH.

PrROOF: We showed that of exists. It is clear that it is a stationary sequence,
since it is composed of independent identically distributed random variables. The
argument, before the proof of the existence of o? gives that it is a solution. Al-
ternately, just plug into the equation.

Next we prove the uniqueness. Assume that there exists another solution, 2
satisfying
Uk = TkCk
and
2 _ 2
Tp = W+ Mew1Th 1

Using the recursions again we conclude

2 2 2 2
02 — 13 =noan-a- -0y — 2N

Using again the Law of Large Numbers and the condition v < 0 we obtain
N1z -y — 0 as.

as N — oo. Since ¢} and 7 are stationary sequences, o2 and 72 are bounded
sequences in probability, we get

2 2

in probability, as N — oc. This implies Plot =15} =1
Conjecture If GIR-GARCH has a unique stationary solution, then vy =

Elognp < 0. It follows from our proof of Theorem 1.1 that there is no solution if
~ > 0. We have to consider the case of v = Elogng = 0 only.

92 The moments of GJ R-GARCH

By Theorem 1.2 it is enough to study the moments of

oo ]

x=3 1T

F=1 i=1}

4



We will use the following well-known inequality (cf. Hardy, Lettlewood and Pdlya
(1959)):

Minkowski’s inequality Let X1, Xs,... be non-negative random variobles. If
EXY < 00,1 < v, then

S EX!<E (}j Xi) < (i(ﬁxr)lf’”)
FE=3 1 i=1 i=1
and

fjm; <E (i}f) < (}%(EX;’)“”) :

fz=]l t==1 1=1

Using Minkowski’s inequality, we find the necessary and sufficient condition
for the existence of EX".

Theorem 2.1 We assume that (1.4) and (1.5) hold and Elogne <0.

(i) If Enf < 1, then EX" < 0.
(ii) If Eng > 1, then EXY = oo.

Proor: By Minkowski’s inequality we have

(£« (£ ) )

By condition (1.5) we get

E(Hn_g) —EHn_g HEn i = (Bnp) .

Using again the properties of the geometric series we conciude that

5 (=(ftw)) -y <

i=l i=

completing the proof of (i).
Using the other half of Minowski’s inequality, similar arguments yield

() > Se(f) S

=1 i=1

since by assumption Enj > 1. Hence (ii) is also proven.



3 Further research

T wish to investigate the following problerms:
Problem 1 How to estimate the parameters (w, o, Qa, ) in the model?

Problem 2 Does GJR-GARCH give better fit for the IBM data then GARCH(1,1) -
model?
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