
1. Introduction

This semester I was continuing my work on the matrix group GL(N, Z/p) and
applied what I’d learned to the tribonnaci series.

At the end of spring semester, I’d read up in detail on the Crystallographic
Restriction and modular arithmetic. I used this to find all the possible non-infinite
orders of matrices with positive integer entries, before moving on to GL(N, Z/p).
(Recall that GL(N, Z/p) is the group (for prime p) of all N × N matrices with
entries in Z mod p.) I thought I could find a way to describe all the orders of
GL(N, Z/p) by connecting it to the set of matrices with positive integer entries
by using the symmetric group Sn, but this approach didn’t yield very impressive
results.

There’s a more pragmatic way to think of the problem, however. I observed
that, for some N and p, there might be hundreds of different orders, but that most
of these orders could be deduced from a few core orders. An order r is a core order
if, for all n ∈ N and n > 1, nr is not an order of GL(N, Z/p).

To find all the orders of GL(N, Z/p) from just the core orders, define the set R
with r ∈ R if r is a core order. Then, for every r, define a set D with d ∈ D iff
r/d is an integer. Then all integers of the form r/d are also orders of matrices in
GL(N, Z/p)

The reasoning behind this is very simple. If A has order r, then A2 has order
r/2, A3 has order r/3, and so on. This simplifies the problem of finding orders of
elements of GL(N, Z/p) significantly.

I also began working with the tribonnaci series this semester. The tribonnaci
series is, like the name suggests, similar to the fibonnaci series. Instead of adding
up the last two elements of a series to get the next, however, you add up the
last three. In particular, I was interested in orders of the tribonnaci series under
modular arithmetic.

2. GL(N,Z/p)

I made some progress on finding a theoretical description of orders of elements
GL(N, Z/p) this summer. The first thing I did was to simplify my table of known
orders to include only core orders.

N P Orders
3 2 7, 4, 3
3 3 26, 8, 6
3 5 124, 24, 20
3 7 342, 48, 42, 28
4 2 15, 7, 6, 4
4 3 80, 26, 24, 18
4 5 624, 124, 20
4 7 2400, 342, 336
5 2 31, 21, 15, 14, 12, 8
5 3 242, 104, 80, 78, 24, 18
5 5 3124, 744, 624, 620

From here I could make a few observations. The highest possible order of an
element of GL(N, Z/p) seemed to be pN − 1. (Note that, by definition, the highest

1



2

order of GL(N, Z/p) has to be a core order.) The order pN−1 − 1 was also always
present.

I set about trying to prove that pN − 1 was the highest possible order. My first
idea was that there was some matrix with order pN − 1 for a small N , and that as
N increased, new matrices with order pN − 1 could be formed from the old one by
simply adding a new first row and column. This idea quickly fell through, however,
when I thought about what it would mean for companion matrices.

If you wanted to construct an N + 1×N + 1 companion matrix from an N ×N
companion matrix by adding a new row and column, the old companion matrix
would have to fit into the bottom right corner of your new companion matrix. This
would mean that the top row of the N +1×N +1 companion matrix would have to
have a non-zero entry in its top right corner. This in turn meant that if you could
construct matrices of order pN − 1 by adding a row and a column to a different
matrix, then the right column of every companion matrix of order pN − 1 would
have no zeroes, only non-zero entries. I knew that companion matrices of order
pN − 1 did not have no non-zero entries in their rightmost column, so this idea
couldn’t be correct.

After that, I thought that maybe there would only be one, or at least not very
many, matrices with order pN − 1, and that the form these matrices or their char-
acteristic polynomials would take would make it clear why their order was pN − 1,
or at least why these matrices had higher order than others. This made me think
that one possibility was that matrices with order pN − 1 would have the rightmost
column of their associated companion matrix filled with large numbers, or would
have evenly spaced zeroes, or some other relatively simple visual cue. (Recall that
any matrix has an analagous companion matrix with the same order.)

With this in mind, I wrote a simple program that, for any N and p, would return
all matrices that had order pN − 1. It seemed that my hopes for a simple visual
cue were unfounded, however, as there were many matrices that had order pN − 1,
and they didn’t seem similar to each other.

Still, I wasn’t exactly expecting an answer to appear as easily as that. I wrote
another program that would take the matrices my first program found and multiply
them by themselves, and would check to see if the matrices diagonalized before they
became the identity, but this idea also fell through.

At this point I wasn’t getting anywhere, so I went back and re-read some of the
papers I’d researched in the spring. The approaches used in finding the Crystallo-
graphic Restriction made me think that perhaps the solution didn’t lie in fiddling
with matrices but in finding an algebraic solution using characteristic polynomials.

I wrote a program that would take any polynomial P (x) and find the smallest d
such that P (x) divided xd−1. If there was such a d, the program would also return
a second polynomial, P ′(x), with P (x)P ′(x) = xd − 1. (Recall that if a companion
matrix has finite order r, then its characteristic equation will divide xd − 1 if d = r
and for no smaller d.)

This led to some interesting results when I plugged in characteristic polynomials
of matrices with order pN − 1 as P (x). The resulting P ′(x) had an pattern: P ′(x)
would be divided into p − 1 subpolynomials of equal length, separated by N − 1
zeroes.

A few definitions are needed. When I refer to the ’length’ of a polynomial, I
mean the difference between the highest and the lowest power of x contained in



3

said polynomial. Also, I will denote each subpolynomial Si(x), with S1(x) having
the highest degree.

The length L of these subpolynomials can be found by solving a simple algebraic
equation. Since P (x)P ′(x) = xd − 1 = pN − 1 and there are p − 1 subpolynomials
separated by N−1 zeroes, you can write (N−1)(p−2)+(p−1)L+(N−1) = pN −1
and solve for L = pN−1 + pN−2 + ... + p2 + p + 1 − (N − 1).

Another interesting aspect was that the coefficients of each subpolynomial Si(x)
could be found recursively from the subpolynomial preceding it. If we denote Ci(j)
as the jth coefficient of the Si(X) polynomial, we can write Ci(j) = 2 ∗ Ci−1(j).

This reveals an interesting factorization of P ′(x). If we define L(x) to be S1(x)
divided by the smallest power of x so that L(x) becomes a polynomial of degree
L − 1, then

P ′(x) = L(x)(xd−[(L−1)+N ] + 2xd−2[(L−1)+N ] + 4xd−3[(L−1)+N ] + ...

This is an interesting result, but I haven’t had time to properly understand it
yet, and so have unfortunately not yet been able to prove why pN − 1 is the largest
order of GL(N, Z/p). Still, I wasn’t only working on GL(N, Z/p) this semester but
also on the tribonnaci series.

3. Tribonnaci Series

The reason I also worked on the tribonnaci series was because it was tied to my
work with GL(N, Z/p). The tribonnaci series can be modeled with matrices.

{ai} is a tribonacci series if ai+3 = ai+2 + ai+1 + ai. If you take any three
elements ai, ai+1, ai+2 and turn them into a 3 × 1 matrix, then you can write





0 1 0
0 0 1
1 1 1









ai

ai+1

ai+2



 =





ai+1

ai+2

ai + ai+1 + ai+2



 =





ai+1

ai+2

ai+3





As you can see, this first matrix, which I will denote T ′, can recreate any tri-
bonacci series. What makes T ′ particularly useful, however, is it’s application in
modular arithmetic. All integer tribonacci series have a finite order under modular
arithmetic, but these orders can get difficult to compute. If you know a theoretical
description of the orders of T ′ under modular arithmetic mod p, however, you will
know at least some of the possible orders of tribonacci series mod p.

I didn’t work with the T ′ matrix so much as I did its transpose, which I called
the T matrix:

T =





0 0 1
1 0 1
0 1 1





The reason I worked with T rather than T ′ is that T is a companion matrix,
which I’d had experience with already, and the two matrices had the same order.

The first thing I did was write a program that computed the orders of the T
matrix mod p. After making a list of orders, two things became apparent that
simplified the problem of computing orders of T immensely.

Below, ord(Tp) denotes the order of a tribonacci matrix under mod p, T ord(Tp) =
Id mod p.



4

Theorem 1. If m = pr1

1 pr2

2 ...prk

k , then ord(Tm) = LCM(ord(Tp
r1

1

), ..., ord(Tp
rk
k

)).

Proof. The identity mod m is a matrix

A = pr1

1 pr2

2 ...prk

k ∗





n1 n2 n3

n4 n5 n6

n7 n8 n9



 + Id.

But we also know that, for 1 ≤ q ≤ k,

T
n∗ord(T

p
rq
q

)
= prq

q





n1 n2 n3

n4 n5 n6

n7 n8 n9



 + Id.

Then, T
LCM(ord(T

p
r1

1

),ord(T
p

r2

2

))
= pr1

1 pr2

2





n1 n2 n3

n4 n5 n6

n7 n8 n9



 + Id.

Furthermore, T
LCM(ord(T

p
r1

1

),...,ord(T
p

rn
n

))
= pr1

1 pr2

2 ...prn
n





n1 n2 n3

n4 n5 n6

n7 n8 n9



 + Id.

And ord(Tm) = LCM(ord(Tp
r1

1

), ..., ord(Tp
rn
n

)). This is what we needed to show.

Theorem 2. ord(Tpk) = pk−1ord(Tp).

Proof. To prove this, we have to show that ord(Tpk ) = p ∗ ord(Tpk−1 ). Let

A = T ord(T
pk−1) =





n1p
k−1 + 1 n2p

k−1 n3p
k−1

n4p
k−1 n5p

k−1 + 1 n6p
k−1

n7p
k−1 n8p

k−1 n9p
k−1 + 1





which is congruent to the identity mod pk−1 for n1, ..., n9 < p.
Then

T p∗ord(T
pk−1) = Ap

.

Define matrices

N =





n1 n2 n3

n4 n5 n6

n7 n8 n9





and

N2 =





n2
1 + n2n4 + n3n7 n1n2 + n2n5 + n3n8 n1n3 + n2n6 + n3n9

n4n1 + n5n4 + n6n7 n2n4 + n2
5 + n6n8 n3n4 + n6n5 + n9n6

n1n7 + n4n8 + n7n9 n2n7 + n5n8 + n8n9 n3n7 + n6n8 + n2
9





letting N2
ij denote the element of N2 that is on the ith row and jth column.

Then



5

A2 =





N2
11p

2k−2 + 2n1p
k−1 + 1 N2

12p
2k−2 + 2n2p

k−1 N2
13p

2k−2 + 2n3p
k−1

N2
21p

2k−2 + 2n4p
k−1 N2

22p
2k−2 + 2n5p

k−1 + 1 N2
23p

2k−2 + 2n6p
k−1

N2
31p

2k−2 + 2n7p
k−1 N2

32p
2k−2 + 2n8p

k−1 N2
33p

2k−2 + 2n9p
k−1 + 1





Which is 2 ∗





n1p
k−1 n2p

k−1 n3p
k−1

n4p
k−1 n5p

k−1 n6p
k−1

n7p
k−1 n8p

k−1 n9p
k−1



 + Id, mod pk (for k > 2).

In fact, An = n ∗





n1p
k−1 n2p

k−1 n3p
k−1

n4p
k−1 n5p

k−1 n6p
k−1

n7p
k−1 n8p

k−1 n9p
k−1



 + Id, mod pk.

This means that Ap is the identity mod pk. This is what we needed to show.

Together, these two theorems simplify the problem of finding the orders of T
mod p for any p to finding the orders of T mod p for only prime p. I modified my
program to only show orders of T for prime p, with the results below:

P Orders
2 4
3 13
5 31
7 48

11 110
13 168
17 96
19 360
23 553
29 140
31 331
37 467
41 560
43 308
47 46

These results seemed a bit confusing. In particular, I wasn’t sure why the orders
decreased, sometimes by a very large amount. Still, I had an idea on why this might
be the case.

Because of the way that the T matrix is constructed, when you multiply T by
itself each row acts as a tribonnaci series. So, for example, in T the first row is
[

0 0 1
]

, in T 2 the first row is
[

0 1 1
]

, in T 3 the first row is
[

1 1 2
]

,
and so on.

I thought that each row of the T matrix might have a sub-order different from
the order of the T matrix. A definition is needed; if T n

i denotes the ith row of the
T n matrix, and Idi denotes the ith row of the identity matrix, then the sub-order
of the Ti is the smallest k with T k

i = Idi. If the sub order of each row was different,
then the order of T would be the LCM of the sub-orders of its rows, which I thought
might result in the strange behavior I saw.



6

So I wrote another program that calculated the order of the T matrix in a new
way; it would treat each row of the T matrix as a tribonnaci series and would
display the sub-order of each row before taking their LCM and spitting out the
order of T . I was surprised, however, to find that the order of the matrix was also
the sub-order of every single row.

After some more thought, however, the reasoning for this became clear. Each
row could be expressed as a combination of the other two. Using the same notation
as before, we can write T n

3 = T n+1
1 and T n

2 = T n
1 + T n−1

1 .
Now suppose

T m
1 =

[

1 0 0
]

= Id1.

Then
T m

3 = T m+1
1 =

[

0 0 1
]

= Id3,

and

T m
2 = T m

1 − T m−1
1 =

[

1 0 0
]

+
[

(p − 1) 1 0
]

=
[

0 1 0
]

= Id2.

As you can see, as soon as one row of T equals its counterpart in the identity matrix,
so will the other two.

This approach may not have revealed how to compute the orders of T , but it
did simplify the problem even further. Since I now knew that the sub-order of each
row was identical to the order of T , and that each row acted as a tribonnaci series,
my programs only had to compute the orders of the tribonnaci series 0 0 1 mod p
instead of computing the order of the matrix T mod p.

Finally, I also applied the program I’d written in section 2. that found the small-
est d such that a polynomial P (x) divided xd − 1 to the characteristic polynomial
of the T matrix.

The result was interesting. If you write the polynomial P ′(x) returned by the
program as n1x

d−3+n2x
d−4+ ... , then n1 = 1 and nm = nm−3+nm−2+nm−1 mod

p. It was the tribonnaci series reappearing as coefficients in a polynomial. This
polynomial with tribonnaci series coefficients would continue until the last three
coefficients became 0, p − 1, and 1. Unfortunately, this wasn’t too useful, since if
you wanted to find the order of the T matrix by finding how long this multiplied
polynomial was, you’d still have to find the order of a tribonnaci series, which is
what I’d already simplified the problem to.

4. Conclusion.

During the past semester, I’ve made progress and found interesting results on
both my old problem of computing orders of GL(N, Z/p) and the new one of com-
puting orders of the T matrix and, eventually, tribonacci series. I’ve found that the
maximum order of an element GL(N, Z/p) is pN − 1, as well as finding an inter-
esting and, I believe, eventually useful factorization for the polynomial P ′(x). I’ve
also reduced the problem of computing orders of T mod p to computing orders of
T mod p for prime p, as well as simplifying the necessary computations in finding
the order of T .


