On boundary correction in kernel density estimation

Abstract

It is well known now that kernel density estimators are not consistent when estimating a density near the finite end points of the support of the density to be estimated. This is due to boundary effects that occur in nonparametric curve estimation problems. A number of proposals have been made in the kernel density estimation context with some success. As of yet there appears to be no single dominating solution that corrects the boundary problem for all shapes of densities. In this paper, we propose a new general method of boundary correction for univariate kernel density estimation. The proposed method generates a class of boundary corrected estimators. They all possess desirable properties such as local adaptivity and non-negativity. In simulation, it is observed that the proposed method perform quite well when compared with other existing methods available in the literature for most shapes of densities, showing a very important robustness property of the method. The theory behind the new approach and the bias and variance of the proposed estimators are given. Results of a data analysis are also given.

Publication
Stat. Methodol.
Rohana J. Karunamuni
Rohana J. Karunamuni
Professor of Mathematics and Statistics
University of Alberta
Tom Alberts
Tom Alberts
Associate Professor of Mathematics
University of Utah

Related