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Expressions for the frequency-dependent polarizability, the Verdet constant, and the energy sum rules
have been derived consistent through third order in the electronic repulsion using an analytical
polarization propagator method. In this approach, the second order optical properties are obtained directly
from the propagator without calculating the individual excitation energies and transition moments which

appear in the sum-over-states procedures.

I. INTRODUCTION

The perturbation calculation of second order optical
properties requires in principle a summation (integra-
tion) over an infinite number of excited states which in
a square-integrable basis set calculation is approxi-
mated by a finite sum over the excited states.! Con-
ventional configuration interaction (CI) approaches eval-
uate the individual excitation energies and transition
moments and these methods thus become quite cumber-
some, especially when correlation effects are intro-
duced into the calculation (any level of CI beyond the
singly excited CI approximation). Direct calculation of
the frequency dependent polarizability using the non-
variational Brueckner-Goldstone many-body perturba-
tion theory has been performed by several authors® and
calculations based on formulas, which give strict upper
and lower bounds for the frequency dependent polariza-
bility, have recently very successfully been used to cal-
culate polarizabilities for two-electron atoms by Glover
and Weinhold.* These formulas are however of a de-
gree of complexity which makes accurate calculations
of frequency dependent polarizabilities beyond the first
excitation threshold and for larger systems very elabo-
rate.

In this communication, we derive formulas for the
second order optical properties (frequency-dependent
polarizabilities, energy sum rules, and Verdet con-
stants) using an analytical propagator approach,®® The
propagator approach allows a direct evaluation of the
second order properties without referring to the indi-
vidual excitation energies and transition moments® and
correlation effects can therefore efficiently be intro-
duced.

Second order optical properties at the time-dependent
Hartree—-Fock’ (TDHF) or coupled Hartree—Fock level
of approximation have been reported by a number of
workers. ®™!* The TDHF approximation is identical to
a polarization propagator approach, which is consistent
through first order in electronic repulsion.* In this
communication we derive formulas for the second order
optical properties, based on the polarization propagator
which is consistent through third order in the electronic
repulsion. The formalism straightforwardly can be ex-
tended to a polarization propagator which is consistent
through any order. In the accompanying publication we
report numerical examples, 1
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In the next section we define the polarization propa-
gator and derive the formula for the frequency-depen-
dent polarizability and the even sum rules S(2K), K =0,
+,1,..+, In Sec. III we analyze the calculation of Ver-
det constants, while the last section contains some con-
cluding remarks.

II. POLARIZABILITIES AND SUM RULES
A. Formal relations
We use the definition of the propagator given by Zu-
barev.'® In energy space the spectral form for the pro-
pagator is®
(A;B))g= Z

n

(0l Aln)n! B10)
E—Q)Q"+in

_(Oléln)(nh&lO)} "

E+w°"—in

10) is the ground state, |n) an excited state, wy,=E, - E,
the exact excitation energy, and A and B are one-elec-
tron operators. Choosing the dipole moment operator,
R, for A and B gives®

- (B Ryp =23 TS Ry, = (0| R|), @

which is the well-known expression for the real part of
frequency-dependent polarizability tensor in the dipole
length formulation.®

The polarizability tensor in the PR, or mixed™!®
representation can correspondingly be obtained from
the propagator (P ; R)) (P is the momentum operator)
using the equation of motion for the {((R; R)), propagator
(atomic units)

(R; R g =i((B; R))z/E . 3)

In the dipole velocity formulation, the polarizability
tensor can be obtained from (P ; P))z by considering the
equation of motion for ((P; R))g

5

(R; R)g = g2 0| [B, R 0) + (B, B }

1 ~ o~
=z {N1+(B;B)s), @
where N is the number of electrons in the system. The

term involving N in Eq. (4) dominates over ((P ; B)) for
small E values and Eq. (4) is not suited for the calcula-
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tion of the polarizability tensor in this energy range.
The polarizability tensor in the dipole velocity formula-
tion can alternatively be obtained from the propagator

«B; B as

14d 5.5
b ar (BiBNe=a 2 P (10
® (5)

The first term in Eq. (5) is the polarizability tensor
whichtherefore canbe obtained from Eq. (5) for E < wy,,.
The index m refers to the lowest excitation energy.
Equations (2)-(5) express the polarizability tensor in the
dipole length, the dipole velocity, and in the mixed form-
ulation. Its spherically symmetric component is known
as the frequency-dependent polarizability,! «(E), which,
e.g., in the dipole-length formulation is expressed as’

a(E)= ~3 Tr{(R; R); . (6)

We next consider the evaluation of the energy weighted
sum rules, or moments, directly from the propagator.
The symmetric components of the energy weighted sum
rules are defined as

S(K) =Y fonol K=0,£1,£2,. . .,
n

E4

om Om

()

where fy, is the oscillator strength

fOn .ROn\szn,
:§|P0nl / Wop »
fim=i5PgRy, (8)

in the dipole length (f*), the dipole velocity (") and in
the mixed (f ) representation, respectively. We refer
to the review of Hirschfelder, Byers—-Brown, and Ep-
stein' for the physical interpretation of the sum rules
and note only that S(0) is the Thomas~Reiche~Kuhn sum
rule, and that S(-~2) is the frequency-independent polar-
izability.

The even sum rule tensors S(2K), K=0, +1, £2, .,
can be obtained directly from the propagator by con-
sidering the limiting behavior of the propagator for
E -0 and ©», Using the spectral representation of the
propagator one obtains straightforwardly that the even
sum rules in the dipole length approximation are given
by

Y ER Rs,

(9)

SY(2K) = (~ 1)*2"F (K 1) lim (E
E—-wo

1 g\¥, » =«
L - - = — -K 1 -1 14 —_— —— .
s*(-2K -2)=-27F(K1) ‘;E:,(E dE) (R;R)g,
(10)
in the dipole velocity form by,

K ~ A
35) EB 3 B)s,

(11)

SY(2K +2) = (- 1)*2°¥(K 1) lim (E“’
E—>o

§ (= 2K) = - 27F(K 1)1 1i O(E )<<P By, (12

and in the mixed representation by
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SH2K) =i(-1)%2"%(K )" lim

E—x

(5° ) BB 0,
(19

SM(-2K -2)=~i 27K (K1) 11m<bf dE) =((B; Ry,

E-0
(14)

where K=0,1,2,... . The odd sum rules cannot be ob-
tained by this procedure because the propagator (2) is an
even function of E,

B. Third order expressions

We have previously14 derived an analytical expression
for the polarization propagator on TDHF form which is
consistent through third order in the electronic repul-
sion. In this section, we use this propagator to obtain
explicit third order expression for the frequency-de-
pendent polarizability tensor and the energy sum rule
tensor.

Let {#,} be a set of Hartree—Fock (HF) orbitals and
let indices @, 8,7,0 (m,n,p,q) refer to occupied (un-
occupied) orbitals and i, j, , 1 to unspecified orbitals.
The HF orbitals define a set of annihilation and crea-
tion operators {a,}, {a}} which together define a set of
spin-adapted particle-hole operators

1
Qe = j-z—(a*,mam +ah.a,.) (=0, Mg =0)

1
Qe = T~ (@hoas = @h8,.) (S=1, M5 =0). (15)
We arrange the spin-adapted particle~hole operators in
super row vectors 'Q and ’Q. The position and momen-
tum operators can be expressed in terms of the super

row vectors as

'Q
Z r,,aia; = <1Qf > (16)
5 'Q
pP= Z piia; =~ V2 (p, -p) Gt/ (17)
7
where
1y =G| Rluy), (18)

1Q is the transpose of 'Q, and r is a row vector with ele-
ments r,,. Inderiving Eqs. (16) and (17) we have used
the fact that the operator space {a{a,} is spanned by the
particle—hole and hole—particle super row operators
alone. Using Egs. (16) and (17), the propagators

(R; AR5, (P;R))p, and ((B;P)); take the form

r
(R;R)g=2(r, r)IP(E)<;'>

(19)
o T
(P ;R)g =~ 2(p, —p)‘P(E)<i,> (20)
o P

where
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(Q;'QM: ('Q;'Q)e
€LY QY 'Q)s

Pi(E) Pyu(E)

P(E)= Py(E) PplE)
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(22)

Notice that the particle—hole part of the polarization propagator alone is not sufficient for direct calculation of sec-

ond order optical properties.

In a previous paper, * we showed that the propagator P(E) could be obtained consistent to third order in the form

-1

E1-A-G(E1-D)'C -B
P(E)= -B* _E1-A* _C'(=F1-D*y'C* | - (23)
|
In the following, we assume that the matrices A, B, C, a"(E)=( Tr{p(Pu ~ P,y - Py +Pyo)p} - N)/E? (25)
and D are real. Explicit expressions for the matrix ele- .
ments can be found in Ref. (14). When the terms in- a¥(E)= 3%15 Tri{p(Py; +P1p— Py — Pyo)i}. (26)

volving C and D are absent, the propagator has the
TDHF form, and the usual eigenproblem solution for

it generates immediately the spectral representation,19
allowing straightforward sum-over-states evaluation of
second order properties, The energy dependence in the
terms C(E1-D)"'C and C(- E1 -D)"'C, which arise from
two-particle, two-hole (2p - 2k) excitations,? prevents
reduction of (23) to a simple eigenvalue problem. We
have recently?! discussed the calculation of individual
excitation energies from a propagator of the form in Eq.
(23).

The frequency-dependent polarizability can however
be calculated directly from the propagator® in Eq. (23)
without explicit knowledge of the individual excitation
energies. The frequency, E,, at which the polarizability
is wanted must be inserted in Eq. (23), and ((R; R))z,,
(P; R))z,, and (B; P))y, can then be calculated from
Egs. (19)-(22). From Egs. (2)-(5) we obtain expres-
sions for the frequency-dependent polarizability in the
dipole length, dipole velocity, and mixed representa-

tions:
af(E) =~ Trir(P,; + Pyy+ Py + Pyy) T} (24)

o=

f(n) =

N|=

(1 1><A—B 0 > <(A+B)(A—B)
1 -1 0 A+B 0

A similar expansion of the second part in Eq. (27)
gives

¢(E1-Dy'C 0 i
( 0 C(-E1-D)'C =§ E™'n(n), (30)
where
(én"c 0 )
hm)=\ o (-pmémrc/- (31)

The propagator matrix in Eq, (27) can thus be ex-
pressed in powers of E™', To obtain the sum rules,

(A -B)(

The energy sum rules in a third order theory can
now be calculated from Egs. (9)-(14) by differentiat-
ing the propagator matrix (23) with respect to E and
considering the limits for E -« and E~0. We consider
first the limit E —« and divide for convenience the pro-
pagator matrix into a part that contains the TDHF-like
matrix and a residual term

El1-A -B
P(E)={< -B —E1—A>
i (C(EI—D)*C ) 0 )}1 (27)
0 C(-E1-D)'C ’

Expanding the first part into a power series in E '1, we
obtain

<E1—A
-B

where

(28)

— -1 o0
A

—-E1-A n=0

(1 0> 1 1> ((A+B)(A-B) 0 >"/2 (1 1)
0 -1 <1 1 0 (A-B)(A+B) 1 -1 nevell ,

(29)

n=1

>T <1 1>
a«B)) \1 -1/ "%

we need to apply the differential operator from Eq. (9),
[E3a/dE))¥E® to (1,2 1)P(E)(;). We find

(- D¥2°X(K 1) lim (E’ —d—)szu £ 1)P(E)( ' )
Eereo dE ? +1
K
=(1,1)
; npnz-Z-:o'lgju
1
X f(ny) nh(”zt) £(n3141) (t l) ,

where the n, represent partitions of the integers the sum

(32)
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of which must fulfill

2j+1

271k=2K+1—2j; 17,z 0. (33)
B=

This relation significantly limits the number of terms in
the product. The expansion of [E*(d/dE)|*E*P(E) contains
a term which is proportional to £ and could make the
series divergent, This term is however removed by the
left and right multiplication with (1+ 1) before taking the
limit E =<, Equation (32), combined with Egs. (9) and
(11), allows us to calculate the positive even sum rules
S’(2K) and 8”(2K+2), and the simplest cases will be
given explicitly later,
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-B
-E1-A+CD'C

E1-A+CDC >
0
C(-E1-D)c+CD'C

propagator matrix is then divided up as
P(E)= ) B

(
- i

By defining A’ :A—C_D'IC, the first term in Eq. (34) can
be expanded in powers of E,

-1

?
|-

C(E1-D)!C+CD'C
0

To calculate the sum rules for negative A, we consider <E1 - A B ) :__i E"“g(n) (35)
the limiting behavior of the propagator for £ ~0. The B -FE1-A e ’
J
where
(10 1 1 (A’ =B)' YA’ +B)™! 0 /11
¢ <o - 1> (1 - 1) ( 0 (A’ +B)"{A! —B)'1> (1 - 1> 7 even
gln) = (36)
1 1 (A’ +B)? 0 (A’ —=B) YA’ +B)! 0 ko101
: <1 - 1) < 0o (A —B)'1> < 0 (A" +B) (A’ —B)"j <1 - 1> nodd .

We can similarly expand the last term in Eq. (34) in
powers of E, obtaining

<6(E1 -D)!c+CD"'C 0 >
0 C(-E1-D)'c+CD'C
==Y E"%(@n), (37)
n=2
where
Cp"C 0 )
k(n) = < 0 (_ 1)"+1éD-"C B (38)

The propagator matrix can now be expressed in powers
of E, and the negative sum rules are obtained by con-
sidering the effect of the operator (1/E)d/dE)* on P(E).
We find

1

-27MK N lim (1, £ P(E) <i 1

2K
SR MDY
= LA TR

[T YIS

j 1
< gt J] Ke2g 20100 <i 1> : (39)
where the n,’s are restricted to those which fulfill
2441
(40)

Z n,=2K+1+2f; n5,= 2 and ng,, = 1.
k=

The number of terms in the product is thus again
limited, and the divergent term in (1/E)(d/dE)*P(E)
which is proportional to E~! vanishes from left and right

J. Chem. Phys., Vol.

]

multiplication with (1% 1) before the limit E -0 is taken.
Eq. (39) combined with Egs. (10) and (12) then gives
the negative even sum rules S¥(~ 2K %) and SV (~ 2K).

An analysis similar to the one made above can be
carried out in the mixed representation, but for brevity,
we omit the general results and give below explicit
forms only for some cases of special interest. The S(2)
sum rule tensors are found from the above analysis to
be

SL(2) =—4r[(A -B)(A+B)(A-B)+ (A ~B)CC

+CDC +CC(A -B)] 7, (41)
S¥(2)=—4p(A+B)p, (42)
S"(2) =4ip[(A +B)(A-B) +CC] F, (43)

and correspondingly for S(0) we have
st =4r(A-B)F, (44)
8'(0)=-4p(A’'-B)"'p, (45)
$¥(0) = — 4ip¥. (46)
The results for S(-2) are
S (~-2)=4r(A’ +B)' T, (47
8"(~2)=-4p(A’ ~B)*[(A’ +B)™
+ (A’ +B)'CD%C
+CD?C(A’ +B)™!
+CD2C(A’ +B)'CD?C +CDC](A’ ~B)'p
(48)
S¥(-2) = - 4ip(A’ +B)'[1+CD*C|(A’ +B) ™ F. (49)
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We note that S¥(2) and 8%(0) do not depend on the two-
particle, two-hole correction at all, and that $¥(0) and
S%(-2) only require knowledge of the frequency-inde-
pendent part of the 2p — 2k matrix, Furthermore, Eq.
(46) exhibits the peculiarity of the mixed representation
that §¥(0) is independent of the approximation used for
the propagator.® In TDHF (a first order polarization
propagator approximation), the sum rules become
especially simple, since the 2p-2k terms disappear,
and only positive or negative powers of A +B remain in
Egs. (41)-(49). Examples have been given by Linder-
berg and Ohrn.® In such a case, the sum rules can of
course be obtained unambigously from the eigenproblem
solution and the sum-over-states formula, Eq. (7).

I1l. THE VERDET CONSTANT

A magnetic field applied parallel to the direction of
propagation of incident light produces a rotation of the
plane of polarization. This is known as the Faraday
effect.?® The magnitude of the angle of rotation per unit
length and unit pressure is determined by the magnetic
field and the Verdet constant, which is given approxi-
mately by the Becquerel formula® %

e dn(E) 41 a1, -1
E
omaE T rad Oe™ atm™ cm™ (50)

V(E) =

where n(E) is the refractive index defined through the
relation?®

ni(E) -1

m:% aNa(E) (51)

and N is the number density of atoms or molecules. In
the gas phase where n(E)=1 Eq. (51) reduces to
n(E)=1+27Na(E) (52)
and N =2, 68811% 10'® molecules atm™ cm™.
The Verdet constant then becomes

meN _ do(E)
=—FE
V(E) mc? dE

(53)

and converting from radians to p(arc) min, we obtain the
units in which the Verdet constant is normally expressed,?’

dae(E)

V(E) = x 10N <2 E ; -1 -1 -
(E)=1.0800 IOcha IE Lmin Oe™ atm™ cm
(54)
or
do(E)

V(E)=25.2864 E pmin Oe atm™ em™  (55)

dE
with E and a(E) given in atomic units. AccordingtoEgs.
(2)—(5) and (19)-(21) the quantity needed to evaluate
do(E)/dE is

4 1+C(E1-D)*C 0
(—1-5 P(E):-P(E) P(E),

0 -1-C(E1+D)%C

(56)
where we have used the expression for the propagator
matrix P(E) in Eq. (23), and the result that the deriva-
tive of an inverse matrix with respect to a parameter
is given by

aM(x)™ .1 dM(x) .
— M(x)™! — Mx)™. (57)

This relation follows from differentiation of MM =1,

Using Eqs. (2), (6), (19), (22), and (55) gives the
following expression for the Verdet constant in the di-
pole length formulation

VI(E)=16.8576E Trir
X[(Pyy +Pyy)(1 +é(E1 ~D)2C)(Py; + Py,)
— (P1p+Pp)(1+C(E1 +D)2C)(Pyy + Pyy) | T 1.

, (58)
The Verdet constant (same units) in the dipole velocity
form is equivalently obtained from Egs. (4), (21), (22),
(55), and (56)as

VY (E)=-16.8576 El— Trip

X[(Py; = Py)(1+C(E1 = D) ?C)(Py; — Pyy) — (Pyz — Pz)
X (1 +é(E1 +D)-2C)(Pp1 - Pzz)]is} + 3aV(E)] s

(59)
where o' (E) is the spherically symmetric component of
the frequency-dependent polarizability in the dipole
velocity formulation. To obtain the Verdet constant in
the mixed representation, we differentiate Eq. (3) with
respect to E anduse Egs. (20)and (55)-(56), whichgives

V¥(E)=-16.8576[i Tr{p
X[(Py; = Pyy)(1 +C(E1 = D)2C)(Pyy + Pyp) ~ (Pyp — Pyy)
X (1+C(E1+D)2C)(Pyy + P,,)| F} +3a¥(E)].

(60)
Explicit formulas for the Verdet constant have thus been
derived in the dipole velocity, and the mixed represen-
tation.

IV. SUMMARY

Formulas for the calculation of frequency-dependent
polarizabilities, Verdet constants, and the energy
weighted sum rules have been derived from a polariza-
tion propagator which is consistent through third order
in the electronic repulsion. Extensions to polarization
propagators which are consistent through an arbitrary
order are straightforward since all that is required is a
redefinition of the matrices in the propagator (23).
Knowledge of individual excitation energies is not neces-
sary in the calculations which make this approach par-
ticularly useful for introducing correlation into the cal-
culation of second order optical properties. Results in
the dipole length, the dipole velocity, and the mixed
representation are obtained with no additional effort.

The Thomas—~Reiche-Kuhn sum rule in the mixed
formulation shows the peculiarity of being independent
of the approximation made to the propagator and is thus
only dependent on the basis set used in the calculation, 22

In the following paper' we presentnumerical examples
of the applications of the derived expression. Examples
will include the He and Be atom and the CO, FH, and
CH' molecules.

J. Chem. Phys., Vol. 68, No. 6, 15 March 197%



2532 Jdrgensen, Oddershede, and Beebe: Polarization propagator calculations

ACKNOWLEDGMENTS

We wish to thank Jack Simons and Jan Linderberg for
illuminating discussions. This work was supported in
part by NATO Research Grant No. 1103 (1975). One of
us (JO) would like to thank the Danish Natural Science
Research Council for financial support.

3 permanent address: Department of Chemistry, Odense Uni-
versity Campusvej 55, DK-5230 Odense M, Denmark.

1y, O. Hirschfelder, W, Byers—Brown, and S. T. Epstein,
Adv, Quantum Chem. 1, 255 (1964),

’H, P, Kelly, Phys. Rev. B 186, 896 (1964).

3N. C. Dutta, T. Ishihara, C, Matsubara, and T. P, Das,
Phys. Rev. Lett. 22, 8 (1969).

4R, M. Glover and F. Weinhold, J. Chem, Phys. 65, 4913
(1976). .

5J, Linderberg and Y. Ohrn, Propagators in Quantum Chem=-
istry (Academic, London, 1973).

D. N. Zubarev, Nonequilibrium Statistical Thermodynamics
(Consultants Bureau, New York, 1974).

P, Jgrgensen, Ann. Rev. Phys, Chem, 26, 359 (1975).

8A, Dalgarno and J. T. Lewis, Proc. R. Soc. London Ser, A
223, 70 (1955).

'R, F. Stewart, D, K. Watson, and A, Dalgarno, J. Chem,
Phys. 63, 3222 (1975).

1p, K. Watson, R. F, Stewart, and A, Dalgarno, J. Chem.

Phys. 64, 4995 (1976),

'p, H, S. Martin, W. H. Henneker, and V. McKoy, Chem,
Phys. Lett. 27, 52 (1974) and J. Chem, Phys. 62, 69 (1975).

121, R, Epstein, J. Chem. Phys. 53, 1881 (1970).

13y, Oddershede, P. Jgrgensen, and N, H, F. Beebe, J.
Chem. Phys. 63, 2996 (1975),

43, Oddershede and P, Jgérgensen, J. Chem. Phys, 66, 1541
(1977).

15p, Jgrgensen, J, Oddershede, P. Albertsen, and N, H, F.
Beebe, J. Chem, Phys. 68, 0000 (1978), the following paper.

16p, N, Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys.
Usp. 3, 320 (1960)].

1TH, A. Bethe and E. E, Salpeter, Quantum Mechanics of one-
and two-electron atoms (Springer, Berlin, 1957).

18A5, E. Hansen, Mol, Phys, 13, 425 (1967).

1%p, Jgrgensen and J. Linderberg, Int, J. Quantum Chem. 4,
587 (1970).

20p, Jgrgensen, J. Oddershede, and M. Ratner, Chem. Phys.
Lett. 32, 111 (1975).

213, Oddershede, P. Jgrgensen, and N, H, F. Beebe, Int, J.
Quantum Chem, (to be published).

2Aa. E. Hansen and T. D. Bouman, Chem. Phys. Lett. 45,
326 (1977).

2R, Serber, Phys. Rev, 41, 489 (1932).

2H, Becquerel, C. R. Acad. Sci. 125, 679 (1897).

%3, H. Van Vleck, The Theory of Electric and Magnetic
Susceptibilities (Oxford University, Oxford, 1932).

%3, 0. Hirschfelder, C. F, Curtis, and R, F, Bird, Molecular
Theory of Gases and Liquids (Wiley, New York, 1954).

L, R. Ingersoll and D, H. Liebenberg, J. Opt. Soc. Am.
46,-538 (1956).

J. Chem. Phys., Vol. 68, No. 6, 15 March 1978



