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Abstract. The lowest electronic transitions in H2, CH’ and Be have been analysed in 
terms of the individual contributions to excitation energies and transition moments in 
a second-order polarisation propagator calculation and in a second-order diagrammatic 
calculation based on both the full particle-hole propagator matrix and on the single-tran- 
sition approximation. We found that collective effects, defined as sums of infinite series 
of irreducible self-energy diagrams, do not affect the excitation energies but change the 
intensities by up to 40 per cent. We further found that the cancellation effects among 
the second-order contributions to the excitation energy are substantial, indicating the 
importance of using methods which are consistent through a certain order in the electronic 
repulsion. Finally, we have shown that the single-excitation scheme is slowly convergent 
especially for systems with close-lying excited states. 

1. Introduction 

The concept collective excitation or plasma oscillation has been used in the theory 
of metals to denote an excitation which in an independent particle picture can be 
interpreted as originating from coherent (or collective) motion of many electrons. 
In the spectrum of a metal, a collective excitation usually shows up as an excitation 
with large intensity, well separated from other strong transitions (Hedin and 
Lundqvist 1969). 

Transitions with similar characteristic spectral properties have been identified for 
atoms (Gelius 1974) and molecules and the notation ‘collective excitationsJ has been 
used (Nicolaides and Beck 1976). These excitations do not, however, originate solely 
from ‘collective motions’ of many electrons and can be described in finite-order 
perturbation calculations (Nicolaides and Beck 1976). 

Excitations of pure collective nature have so far not been identified in atomic 
and molecular spectra. In this communication we will investigate the effect of collec- 
tive motion on already existing electronic transitions. We define the concept collective 
effect as the effect that coherent motion of many electrons has on an electronic 
transition which can be described in a finite-order perturbation theory. In a many- 
body language the present definition of collective effects corresponds to sums of 
infinite series of irreducible self-energy diagrams, e.g. the infinite series summed in 
the time-dependent Hartree-Fock (TDHF) approximation. Several other definitions of 
the concept ‘collective effect’ have been used in the literature (Amusia et a1 1974, 
Wendin 1970, 1971, 1972, 1975, Lundqvist and Wendin 1974) and in $ 3  we return 
to a detailed comparison of the various definitions. 
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The analysis we will carry out is based on a polarisation propagator approach 
described by Oddershede and Jmgensen (1977a). We show how molecular and atomic 
transitions in the ultraviolet frequency range are affected by collective effects. We 
find that the collective effects originating from the TDHF series are important for 
an accurate description of the electronic transition moments whereas excitation 
energies are virtually unaffected. We have calculated excitation energies and transition 
moments which in addition to the collective effects contain all first- and second-order 
electronic correlation and we find that the importance of the collective effects is 
independent of the order of perturbation calculation. The effects we are discussing 
are thus of truly collective nature. 

In a propagator calculation the electronic excitation energies are determined by 
diagonalising the proper particle-hole self-energy matrix (Oddershede and J~rgensen 
1977a). An alternative and widely used approach consists of calculating only one 
excitation energy at a time (see e.g. Paldus and Ciiek (1974)). We have calculated 
excitation energies using both methods and we find that through second order in 
electron repulsion, the approach based on the whole self-energy matrix gives much 
more reliable excitation energies, especially for close-lying excited states. We also 
examined the size of the individual contributions to the second-order excitation 
energies and found a considerable cancellation among second-order diagrams thus 
demonstrating the importance of using consistent theories. 

In the next section we briefly discuss consistent approximations to the polarisation 
propagator and the particle-hole propagator based on the whole propagator matrix 
and on a single-transition approximation. We give a precise definition of the concept 
*collective effect' and show how they can be separated from finite-order perturbation 
terms. In $ 3  numerical results are given for the lowest transition in Be, H2 and 
CH' while $4 contains some concluding remarks. 

2. Theory 

2.1. The polarisation propagator 

We use a finite basis set description. Let {ui} be a set of Hartree-Fock (m) molecular 
orbitals and let ai and a! be the corresponding annihilation and creation operators. 
Indices a, B, y,6 (a, b, p ,  q )  refer to orbitals which are occupied (unoccupied) in the 
HF ground state. The particle-hole creation operator is given as 

qLa = a,'a,. (1) 

Using the notation of Zubarev (1960) and Linderberg and Ohrn (1973), the polarisa- 
tion propagator matrix can be written as 

where q+ = {qAa) is a row vector and ijt is the transpose of qt .  The spectral represen- 
tation of the polarisation propagator (the particle-hole component) is 
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The poles for the propagator, fuOn,  are the exact excitation energies of the system 
and the residues give the corresponding transition moments. 

In a previous publication (Oddershede and Jsrgensen 1977a), we showed how 
the polarisation propagator could be obtained consistent through third order in the 
electronic repulsion in the form 

{-;l - A - C(E1 - D)-'C - B  
-E l  - A - C(-El  - D ) - ' C  

P(E) = 

We have for convenience assumed that the matrices A ,  B,  C, and D are real. Through 
first order in the electronic repulsion A and B are the standard RPA matrices involving 
only Hartree-Fock average values (Jsrgensen 1975). In higher-order theories average 
values must be taken with respect to a correlated ground state (Oddershede and 
Jmgensen 1977a). The term C(E1 - D)- C is the t'wo-particle, two-hole correction and 
represents the effect of two-particle, two-hole excitations (qtqt)  on the particle--hole 
(qt) spectrum (Jmgensen et al 1975). Using excitation operators of the proper spin 
symmetry, we can treat the singlet and triplet problems separately. The singlet-singlet 
and the singlet-triplet excitation spectra can be obtained from the singlet, 'P(E) ,  
and the triplet, 3P(E), propagators, respectively, both of which have the form given 
in equation (4). The explicit expressions for the matrices appearing in equation (4) 
are given by Oddershede and Jsrgensen (1977a) and Oddershede et al(1977a). Odder- 
shede and Jmgensen (1977a) also discuss the relation between the present approach 
and the configuration-interaction method. The order of the individual matrices 
A ,  B, C, and D necessary to obtain the polarisation propagator consistent through 
zeroth, first and second order in electron repulsion is summarised in table 1. In 
zeroth order the excitation energies are simple orbital-energy differences. The first- 
order approximation to the polarisation propagator represents the time-dependent 
Hartree-Fock approximation (Jsrgensen 1975), which is identical to the random- 
phase approximation (RPA) with exchange. The second-order approximation is equiv- 
alent to the higher RPA method of Shibuya and McKoy (1970) and the self-consistent 
polarisation propagator approach of Linderberg et nl (1972) both of which must 
be augmented with two-particle, two-hole (2p-2h) corrections (Shibuya et al 1973, 
Jerrgensen et al 1975) to be consistent through second order (Oddershede and 
Jerrgensen 1977a). 

Table 1. The orders? of A ,  B, C and D matrices necessary to obtain the particle-hole 
and the polarisation propagator consistent through zeroth, first and second order in 
the electronic repulsion. 

Order of Polarisation$ Particle-holes 
propagator propagator propagator 
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The polarisation propagator in equation (4) contains, in addition to terms which 
represent finite-order irreducible self-energy diagrams, infinite series of irreducible 
diagrams, i.e. collective effects (Oddershede and J~rgensen 1977a). This will become 
more apparent from the analysis of the particle-hole propagator in $2.2. 

The propagator matrix in equation (4) is invariant under a transformation 
E -+ - E  and is therefore consistent with a spectral representation (Linderberg and 
Ohrn 1973). This means that the transition-strength matrix elements ( n j q t  10) and 
(nlq10) can be determined from the residues of the particle-hole component of the 
polarisation propagator at the poles E = coon and E = -coon, respectively (J~rgensen 
1975). We have, however, shown (Oddershede et a1 1977a) that through third order 
in the electronic repulsion, the transition strengths can alternatively be found from 
the full polarisation propagator in equation (4) by performing a pole search for posi- 
tive E values alone. This procedure has been used to calculate the oscillator strengths 
reported in $3. 

2 .2 .  The  particle-hole propagator 

The particle-hole propagator is defined as the ((ij;ijt))E component of the polarisa- 
tion propagator and is obtained from the polarisation propagator by partitioning 
(Lowdin 1963) of the inverse matrix in equation (4) 

( ( t j ; q t ) ) i l  = El  - A - C(E1 - D)- 'C - B [ -  El  - A - C(- E l  - D)-'C]-'B. 
( 5 )  

The inverse matrices (El - D)-' and [El + A - e(El  + D)-'C]-' generate infinite 
series of diagrams each of which corresponds to individual terms in the expansion 
of the matrix 

[El + A(0)  + A(1)I-l = [El + A(O)]-'  - [El + A(O)]-'A(l)[El + A(O)]-' + . . . .  
(6) 

The number in the parentheses following the matrices indicates the order of the 
matrices. For B = B(l) we obtain the well known infinite sum of RPA ('ring') diagrams 
shown in figure 1 (Oddershede and J~rgensen 1977a). These diagrams can be inter- 
preted as repeated particle-hole scattering events. The RPA series of diagrams are 
the only infinite series present in the first-order theory for the polarisation propagator 
(TDHF-like approach). In a second-order TDHF-like approach where B = B(1) + B(2)  
and A = A ( l )  + A(2)  (see table 1) other RPA-like infinite series appear. These series 
show up when a B(1) matrix element is replaced by a B(2)  element and when an 
A ( l )  element is replaced by an 4 2 )  or a e(1)[E1 + D(O)]-'C(l) matrix element or 
a combination of both. All these series can still be characterised as partly representing 
repeated particle-hole-type scattering. 

Figure 1. The infinite RPA series of irreducible diagrams which originate from the expan- 
sion of the inverse matrix in the term B(1) [ E  + A(0) + A(l)]-'B(l) in the proper particle- 
hole self energy. A dot represents an antisymmetrised vertex (Hugenholtz 1957). 
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In a third order TDHF-like theory more complicated RPA-like series will be gener- 
ated by the last term in equation (5).  The D matrix then includes first-order terms 
and the (El - D)-' matrix introduces additional infinite series of irreducible dia- 
grams. We refer to our previous paper (Oddershede and Jorgensen 1977a) for a 
closer analysis of these series of diagrams. 

The polarisation propagator approach thus implicitly includes irreducible diagram 
series summed to infinite order. Kelly (1969) refers to these summations of diagrams 
as energy shifted denominators. In an order-by-order evaluation of the particle-hole 
propagator, these infinite series of diagrams are not included. The expressions for 
the propagator in a strict diagrammatic approach can be derived from the particle-. 
hole propagator in equation ( 5 )  by neglecting certain terms. The matrix elements 
needed to obtain the particle-hole propagator consistent through first and second 
order in the electronic repulsion are listed in table 1. If we write equation ( 5 )  in 
the form 

((Gt; q))E1 = El  - A(0) - M ( E )  (7) 
where M(E) is the proper particle-hole self-energy or Bethe-Salpeter kernel, it follows 
from table 1 that in a strict first-order theory the self energy is 

M"'(E) = A(1). (8) 
This represents the single-excited configuration interaction (SECI) or the Tamm- 
Dancoff approximation. In a strict second-order diagrammatic approach the self 
energy is (see table 1) 

M(2'(E) = M"'(E) + 4 2 )  + E(l)[El - D(O)]-'C(l) + B(1) [-El - A(O)]-'B(l) (9) 

which can be obtained from the second-order TDHF-like approach by discarding the 
B(2), A(1), A(2) and E(l)[El - D(O)]-'C(l) matrices in the last term in equation (5).  
This approximation is expected to have a minor effect on the poles located at positive 
E values, whereas the positions of the negative poles change more drastically due 
to the fact that the asymptotes in the negative energy plane in the second-order 
diagrammatic approach appear at E l  + A(0) = 0 (see equation (9)) *and at 
E l  + A(0,1,2) + Z'(l)[ - El  - D(O)]-'C(l) = 0 in the TmF-like approach (see equa- 
tion (5) ) .  The self energy in equation (9) is no longer invariant under the transforma- 
tion E -+ - E  and the corresponding particle-hole propagator can consequently not 
be represented in the normal spectral form (3). The determination of transition 
moments requires, as stated in 92.1, in principle knowledge of the residues for both 
E = won and the corresponding pole in the negative plane. 

A closer analysis of the self energy in equation (9) shows, however, that in a 
second-order diagrammatic approach it is possible to obtain the transition moment 
from the positive E solutions alone. In figure 2 we have displayed the behaviour 
of the lowest eigenvalues of M(')(E) for Be. The values of the lowest positive and 
negative excitation energies are also indicated. The negative poles are located close 
to the asymptotes in the region where the descent of w(E) is very steep. The factor 

-1  r = [l - (dw(E)/dE),= - 

is thus very small (equal to about - 5  x for the least negative pole in figure 2). 
Oddershede et a1 (1977a) have shown that for energy-dependent self energies, such 
as M(2) (E)  in equation (9), the eigenvectors from the RPA-like eigenvalue problem 
(for E = -won) must be multiplied by r to obtain the transition-strength matrix 
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E lau) 

Figure 2. The two lowest eigenvalues of pi symmetry (full curves) and of sigma symmetry 
(broken curves) for the self-energy matrix in the second-order diagrammatic perturbation 
calculation for Be as a function of the energy parameter E. The excitation energies are 
the points for which E = o ( E )  (see equation (7)) and are marked with circles. 

element corresponding to -coon, (nIq10). Since the eigenvectors are of similar magni- 
tude for E = k coon, the smallness of r for E = - coon shows that (nlqlO) can be 
neglected compared with (nlqtlO) in the second-order diagrammatic approach. In 
higher orders the behaviour of M(E)  for negative E values will be different and 
the present conclusion may not hold. 

Knowing the A ,  B ,  C, and D matrix elements, we can calculate excitation energies 
and transition moments from the particle-hole propagator consistent through a cer- 
tain order, and from comparison with the polarisation propagator calculated through 
the same order, we obtain a measure of the significance of the collective effects present 
in the polarisation propagator approach. The importance of the collective effects 
originates from the very different behaviour of the self energy for negative energies 
in a strict-order diagrammatic approach and in the corresponding polarisation propa- 
gator method. A much higher level of approximation than the second- and third-order 
theories considered here is required if the self energy in a strict-order diagrammatic 
approach which does not include collective effects is to attain the proper behaviour 
of the self energy for negative E values. 

2.3. Single-excitation part of the particle-hole propagator 

In the preceding analysis we have assumed that the excitation energies are obtained 
by diagonalising the whole M(E)  matrix. In most diagrammatic perturbation calcula- 
tions, however, only one excitation (ma) is considered at a time (Paldus and Ciiek 
1974). This means that only the diagonal elements in ( ( i j ;q t ) )E are computed. 
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Figure 3. All irreducible first (a) and second (b) - (k)  single-excitation self-energy diagrams. 
In a particle-hole propagator calculation figure 3(b) is reducible. 

According to table 1 the first-order compact vertex part in the single-excitation-type 
perturbation calculation is the diagonal part of A ( l ) ,  i.e. 

M & Y E ) m e , m e  = A ( I ) m e , m z  ( 10) 
which is diagrammatically represented in figure 3(a). This approximation corresponds 
to a single determinantal energy difference and is often referred to as the virtual 
HartreeeFock or single-transition approximation (STA) (see e.g. Dunning and McKoy 
1967). 

In second order M,,(E) consist of the diagonal elements of M " ' ( E )  plus one 
additional term originating from partitioning of the effect of all other A(1) matrix 
elements into the A,,,,, element. This element can be analytically represented by 

and the corresponding Hugenholtz (1957) diagram (see also Brandow 1 9 6 7 )  is dis- 
played in figure 3(b). This diagram is reducible in the diagrammatic approach where 
we diagonalise the whole M(E) matrix (Oddershede and Jsrgensen 1977a) but is 
irreducible in a single-excitation perturbation calculation (Paldus and CiZek 1974). 
In a second-order single-excitation approach the total proper particle-hole self energy 
thus becomes 

The corresponding Hugenholtz diagrams are displayed in figure 3. It can be shown 
(Oddershede and Jsrgensen 1977b) that the excitation energy computed from M& 
contains all pair correlation and orbital relaxation effects through second order in 
the electronic repulsion. Comparison of excitation energies obtained from the 
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particle-hole propagator and from the single-excitation approach gives information 
about the importance of off-diagonal elements in the self-energy matrix. 

3. Results 

3.1. General remarks 

We calculated excitation energies and oscillator strengths in the dipole length and 
dipole velocity approximation using the three different methods described in the pre- 
ceding section : the polarisation propagator approach which includes collective effects, 
the diagrammatic or particle-hole propagator method which through second order 
does not contain collective effects and the single-excitation scheme. Results through 
first and second order in the electronic repulsion are given in tables 2-4. The 
electronic transition moments are, together with the excitation energies, displayed 
in figures 446. For Hz we used a basis set consisting of 38 Slater-type orbitals (STO) 
and for CH' a 45 STO basis set was used (see Oddershede et al 1977b for details). 
For Be we used the basis set given by Moser et a1 (1976) (50 STO). With basis sets 
of the indicated size the errors due to use of finite basis sets are very small. To 
obtain a numerical estimate of the magnitude of this error, we have performed another 
calculation on Be using a 38 STO basis set. The basis set consisted of two Is and 
3p functions, four 2s and 2p functions, and one 3s, 4p, 3d and 4d function and 
is thus quite different from the basis set used by Moser et a1 (1976). The exponents 
were in general substantially larger than those given by Moser et a1 (1976). We 
found, in agreement with previous experience (Oddershede and Elander 1976, Elander 
et a1 1977), that the transition moments were least affected by the change in basis 
set. The excitation energies differed by 1 to 3% whereas the change in the transition 
moments were below 1%. Both error bars are, however, well below the size of the 
effects that we are calculating in the present communication. 

Table 2. Excitation energies ( E )  and oscillator strengths in the dipole length ( f L )  and 
the dipole velocity ( f v )  formulation for the x 'C: to B 'Z: transition in HZ at 
R = 1.40 Bohr. 

E (ev) fr. 1" 
Single-excitation scheme 
1st order (STA, HF) 

2nd order 
Diagrammatic without collective effects 
1st order (SECI) 
2nd order 
Polarisation propagator with collective effects 
1st order (TDHF, RPA) 
2nd order (SOPPA) 
2nd order with shifted denominator 
Other results 
RPA results? 
Kolos and Wolniewicz 

14.26 
13.87 

12.73 
12.70 

12.67 
12.69 
12.82 

12.67 
12.75: 

0.088 0,032 

0.307 0,228 
0.323 0.246 

0.285 0.288 
0,289 0,292 
0.298 0,297 

0.293 
0.3005 0.307s 

t R F Stewart, D K Watson and A Dalgarno 1976 J .  Chem. Phys. 65 2104-11. 
t Kolos and Wolniewicz (1965, 1968). 
C; Wolniewicz (1969). 
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Table 3. Excitation energies (E) and oscillator strengths in the dipole length (fL) and 
the dipole velocity (fV) formulation for the x 'X' to A 'n transition in CH' at 
R = 2.137 Bohr. 

Single-excitation scheme 
1st order (HF, STA) 
2nd order 
Diagrammatic without collectiue effects 
1st order (SECI) 
2nd order 
Polarisation propagator wirh collective effeec 
1st order (TDHF, RPA) 
2nd order (SOPPA) 
2nd order with shifted denominator 
Other results 
RPA results? 

Experiment 
CI 

3.60 0.0537 0.0724 
3.21 

2.87 0.0224 0.0144 
2.98 0,0237 0.0072 

2.60 0.0111 0.0167 
2.87 0.01 20 0.0131 
2.72 0~0110 0,0137 

: ts 

2.39 0,0109 
3,173 0.01476 
3.07 

t D K Watson, R F Stewart and A Dalgarno 1976 J .  Chem. Phys. 64 4995-9. 
: S  Green, P S Bagus, B Liu, A D McLean and M Yoshimine 1972 Phys. Rev.  A 5 
16148.  
8 M Yoshimine, S Green and P Thaddeus 1973 Astrophys. J .  183 899--902 (interpolated 
value). 

Calculated from the experimental RKR curves for the x '2' and A 'TI states given 
by I Botterud, A Lofthus and L Veseth 1973 Phys. Scr. 8 218-24. 

For H2 our calculated excitation energy and oscillator strengths agree well with 
those calculated by Kolos and Wolniewicz (1965, 1968) and Wolniewicz (1969). For 
Be satisfactory agreement is obtained with the experimental oscillator strength 
(Martinson et a1 1974) and excitation energy (Moore 1949) even though the agreement 
was not as good as that obtained by Moser et a1 (1976) using the same basis set, 

Table 4. Excitation energies ( E )  and oscillator strengths in  the dipole length (fL) and 
the dipole velocity (fv) formulation for the lsz2sz('S) to ls22s2p('P) transition in Be. 

E (ev) f L  f V  

Single-excitation schenie 
1st order (STA, HF) 
2nd order 
Diagrammatic without collective effects 
1st order (SECI) 
2nd order 
Polarisation propagator with collective effects 
1st order (TDHF, RPA) 
2nd order (SOPPA) 
2nd order with shifted denominator 
Other results 
bet he--Goldstonet 
Experiments 

5.36 
5.55 

5.04 
5.10 

4.79 
5.02 
4.96 

5.29 
5.28: 

1.52 0.73 

1.92 0.88 
1.96 0.86 

1.39 1.38 
1.43 1.28 
1.42 1.30 

1.39 1.38 
1.34 0.05g 

~ ~~~~~ 

i- Moser et a! (1976) 
$ Moore (1949). 
9 Martinson et a1 (1974) 
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Figure 4. Excitation energies ( A E )  and the square of the electronic transition moments in 
the dipole length (Mi) and the dipole velocity (M;)  formulation for the x ' C ~ - + R  'Z: 
transition in H2 ( R  = 1.40Bohr) cJculated at different levels of approximation: (i) single- 
excitation perturbation calculation (single e x )  in first order (STA) and second order (2) 

respectively; (ii) diagrammatic perturbation calculation without collective effects (p-h prop)  
in first order (SECI) and second order (2) respectively; (iii) polarisation propagator calcula- 
tion with collective effects (pol prop)  in first order (TDHF), second order (SOPPA) and 
second order with energy-shifted denominators (shift). Comparisons are made with the 
CI calculations of Kolos and Wolniewicz (1965, 1968) and Wolniewicz (1969). 

This indicates that higher-order propagator methods are needed to remove the 
residual disagreement between theory and experiment (Oddershede et al 1977a, 
J~rgensen et a1 1977). The electronic oscillator strength is not a directly measurable 
quantity for molecules (see e.g. Hinze et a1 1975, Oddershede and Elaiider 1976) 
and direct comparison with experiments is only possible through the use of the 
electronic transition moment to  calculate radiative lifetimes. This has been done for 
CH' using the present method (Elander et a1 1977) and we found very good agree- 
ment between experimental and theoretical radiative lifetimes. 

In the next three subsections we will discuss some common features of the spectra 
in figures 4-6 and tables 2-4. 

3.2. Collective efects 

The difference between the polarisation and particle-hole propagator results in 
figures 4-6 indicates the importance of the collective effects. It is evident from the 
three examples that inclusion of collective effects (the polarisation propagator 
approach) improves the quality of the electronic transition moments both in the 
length and velocity approximation, whereas the influence on the excitation energies 
as expected is negligible. The largest effect is found for Be and the smallest for 
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Figure 5. The x 'Z+-+A 'n transition in CH' at R = 2.137 Bohr. See caption for figure 4 
and table 3 for explanation of the abbreviations. 

,801 

z 
026 

0.18 
S T A I Z I ,  ,SEC1 i2i TDHF shtf t  C I  exp 

swgle exc p-hprop SOPPA 

Figure 6. The ls22s2('S)+ ls22s2p('P) transition in Be. See caption for figure 4 and 
table 4 for explanation of the abbreviations. 



12 J Oddershede, P J0rgeizseiz and N H F Beebe 

H z  in agreement with the general observation that correlation effects are much more 
important for Be than for Hz.  

Another important feature can be observed from figures 4-6. The importance 
of the collective effects depends very little on whether they are added to a first- 
or second-order calculation. The differences between SECI and TDHF results are almost 
the same as the differences between the corresponding second-order results. In other 
words, the contribution to the transition moments from the second-order RPA diagram 
in figure 3(c) is unimportant, whereas the summed contribution from the whole 
RPA series is substantial. This conclusion is apparently in disagreement with the obser- 
vation made by Kelly and Simons (1973) who find that the RPA terms beyond second 
order can be neglected. Kelly and Simons used a V'"' potential, whereas we use 
a I/" potential for the virtual Hartree-Fock orbitals which is probably the reason 
for the slow convergence of our RPA series (Kelly 1963). 

The lack of a common precise definition of the concept 'collective effect' has 
previously caused some confusion. One such example is the calculation of the ionisa- 
tion of the 4d subshell of Ba I .  Wendin (1973) found that collective effects as calculated 
in the random-phase approximation (RPA) with exchange were very important for 
the description of the 4d photoabsorption in Ba, whereas Fliflet et a1 (1974) concluded 
that the absorption was described equally well in the Hartree-Fock and in the RPA 
level of approximation. This apparent disagreement was caused by a different choice 
of the V N - '  potentials. Part of the correlation included in the V"-' potential of 
Fliflet et a1 (1974) .was denoted collective effects by Wendin (1975) and estimates 
of the collective effects in the two calculations were thus quite different. Brandt and 
Lundqvist (1963, 1965, 1967) and Wendin (1970, 1971, 1972, 1975) denote all correla- 
tion not present in a one-electron description, based on a T/"- ' potential, as collective 
effects, provided the correlation gives an appreciable shift in the transition described 
in the one-electron picture. All correlation corresponding to summing Green's 
function diagrams to infinite order is thus denoted collective by Wendin (1975). With 
this definition the correlation included in the Tamm-Dancoff approximation will 
be denoted collective and many of the terms included in the P" - potential used 
by Fliflet et a1 (1974) are hence denoted collective by Wendin. 

3.3. Single-excitation calculations 

Comparison of excitation energies in the single-excitation scheme and those obtained 
from the poles of the particle-hole propagator shows that the latter approach gives 
more reliable excitation energies for H2 and Be. For C H +  the excitation energies 
are of comparable quality, due to the fact that the x + A  transition is well 
separated from other transitions of the same symmetry. For Hz and Be, this is not 
the case, and it is therefore important to incorporate the effect of off-diagonal matrix 
elements in M ( E )  in a non-perturbative manner as done in the particle-hole propa- 
gator approach where the excitation energies are obtained from diagonalising the 
whole M ( E )  matrix. 

If the single-excitation calculation is carried to sufficiently high order in electron 
repulsion, it will give the same answer as the diagonalisation procedure. The single- 
excitation scheme is thus a slowly convergent procedure. This conclusion agrees with 
that reached by Paldus and Ciiek (1974). It should in this connection be noted 
that use of the P" - ' potential would probably have resulted in a better convergence 
in the single-excitation calculation (Kelly 1969). 
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3 .4 .  Cancellation effects 

In table 5 we have listed the individual second-order contributions to the Be 2s-2p 
excitation energy as calculated from the particle-hole propagator. Even though some 
of the individual terms are rather large, the total contribution from all second-order 
diagrams is modest, due to cancellation effects between individual diagrams. This 
behaviour was found for all the calculated excitation energies. 

Table 5. Second-order contribution to the excitation energy for the 
ls22s2('S~l~22~2p(1P)tran~ition in Be. 

Contributions from: 
Diagrammatic 
representation A< (eV) 

~~ 

Reference-state correlation Figures 3 ( d t ( e )  + 0.92 
RPA term Figure 3(c) -0.16 
2 p 2 h  terms Figures 3 ( f ) - ( k )  -0 70 
All 2nd-order terms Figures 3(c)-(k) + 0.06 

The diagrams in figures 3(d) and (e) represent A(2) matrix elements, i.e. the second- 
order contribution to  the excitation energy originating from using a correlated ground 
state (Oddershede and Jmgensen 1977a). These two diagrams give a large positive 
contribution to the excitation energy. They are the only extra diagrams included 
in the higher RPA scheme by Shibuya and McKoy (1970) and the self-consistent 
polarisation propagator approximation (Linderberg et al 1972), both of which are 
known to give too large excitation energies (Rose et a1 1973, Jarrgensen et al 1974). 
These methods must be augmented with the effect of two-particle, two-hole excitations 
(2p2h)  to  give reliable excitation energies (Rose et a1 1973, Oddershede et a1 1975). 
The 2 p 2 h  terms (the c(El  - D ) - ' C  matrix in equation (4)) are diagrammatrically 
represented in figures 3(f)-(k) and the numbers in table 5 clearly show the above- 
mentioned cancellation effects between the 2 p 2 h  terms and the rest of the second- 
order contributions. 

The analysis demonstrates that reliable results can only be expected from the 
consistent second-order approach. Inclusion of either 2 p 2 h  terms or reference-state 
correlation alone gives unreliable excitation energies. 

4. Conclusions 

We have used second-order propagator approaches to analyse the lowest transitions 
in Be, H2 and CH'. We found that collective effects, defined as sums of infinite 
series of irreducible particle-hole self-energy diagrams, contributed very little to 
excitation energies but were extremely important for a reliable description of the 
intensities of the spectra. The RPA series was especially important. We found that 
inclusion of RPA diagrams in first as well as second order improved the agreement 
between the oscillator strengths in the dipole length and the dipole velocity formula- 
tion. In a first-order theory (TDHF) the length and velocity formulations are equivalent 
if we use a complete basis set (Harris 1969). 

In a second-order diagrammatic approach we have shown that there is a consider- 
able cancellation among the individual diagrammatic contributions in agreement with 
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the finding by Yeager and Freed (1977). This demonstrates the importance of using 
consistent theories to calculate excitation spectra. 

For Be and H2 we found that the second-order excitation energies calculated 
in a single-excitation perturbation calculation are less accurate than those obtained 
from the poles of the whole particle-hole propagator matrix. In CH' where the 
lowest state is well separated from other states with the same symmetry, the two 
propagator approaches give excitation energies of comparable quality. 

As a final comment we would like to add that all the above conclusions are 
based on a few calculations on smaller atoms and molecules. Further applications 
on large systems are necessary. We do not expect that the cancellation effects and 
the slow convergence of the single-excitation calculation will be less pronounced 
in larger systems. The importance of collective effects will probably increase, especially 
for systems with populated d and f shells. This latter point would be in agreement 
with the conclusion reached by Wendin (1974). 
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