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0. Introduction. Symmetry in mathematics has a context, captured by the
notion of a category. In this course we will revisit the undergraduate mathematics
curriculum in algebra and geometry through the lenses of symmetry and categories.
This will culminate in the classification of the representations of finite groups via
their character tables. We will also study categories of differentiable manifolds,
a graduate topic building on calculus and analysis that can used, among other
things, to help classify representations of complex groups arising in physics.

A category axiomatizes some basic properties of sets and functions between sets.
If S, T and U are sets and

f : S → T and g : T → U

are functions, then g ◦ f : S → U is their composition, defined by:

(g ◦ f)(s) = g(f(s)) for all s ∈ S

Composition is thus an operation on pairs of functions that is rarely commutative;
unless U and S are the same set, the reverse composition f ◦ g isn’t even defined.
On the other hand, it is associative. If f : S → T and g : T → U and h : U → V
then (h ◦ g) ◦ f = h ◦ (g ◦ f).

Each set S (including the empty set) comes equipped with the identity function:

1S : S → S; defined by 1S(s) = s for all s ∈ S

Functions that are both injective (one-to-one) and surjective (onto) have inverses.
If f : S → T is such a function (i.e f is a bijection), then the inverse function
f−1 : T → S is also a bijection, and:

f−1 ◦ f = 1S : S → S and f ◦ f−1 = 1T : T → T

In this sense, f−1 is a two-sided inverse of the function f .

We might visualize the category of sets as a directed graph. The vertices of the
graph correspond to the sets S and arrows of the graph correspond to the functions
(it’s a very big directed graph!). The identity functions are visualized as arrows
that loop from S back to S, and the composition law is an assignment of a new
arrow when the tip of one arrow points to the base of another.

The key features of sets stressed above are combined in the following:

Definition 0.1. A category C consists of the following:

• A collection of objects, usually denoted with capital letters, e.g. X,Y, Z.

• A set of morphisms (functions) hom(X,Y ) attached to each pair of objects,
whose elements are the morphisms (functions) from X to Y , usually denoted with
small letters, e.g. f, g, h.

• A composition operation on morphisms:

◦ : hom(X,Y )× hom(Y,Z)→ hom(X,Z)

that is associative, and finally:

• An identity morphism 1X in each set hom(X,X).
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Remark. The objects in the categories in this course will all be sets with some
additional attributes, and the morphisms we consider will all be functions that
“respect” the additional characteristics.

Definition 0.2. (a) An element f ∈ hom(X,Y ) within a given category C is an
isomorphism if f has a two-sided inverse g ∈ hom(Y,X). That is:

g ◦ f = 1X and f ◦ g = 1Y

(b) A symmetry of X in C is an isomorphism from X to itself.

Example. If S is a finite set, then the symmetries of S (in the category of sets) are
the permutations of the elements of S. A set with n elements has n! symmetries.

So how does this related to the colloquial notion of symmetry?

The plane R2 is an example of a set with additional attributes. One of these
attributes is the distance between two points, given by the Pythagorean Theorem:

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

This makes R2 into a metric space, and the functions f : R2 → R2 that do not
change the distances between points:

d(f(x1, y1), f(x2, y2)) = d((x1, y1), (x2, y2))

are the Euclidean symmetries (or congruences) of the plane. In Euclidean geometry,
two shapes (e.g. triangles) are said to be congruent if there is a symmetry of the
plane that takes one shape to the other. There are analogues for R3,R4, etc.

In the colloquial notion of symmetry, a shape (or pattern) is placed in the plane,
and the Euclidean symmetries that preserve the object/pattern are the symmetries
of that object/pattern. For example, the 8 symmetries of a square comprise the
dihedral group of order 8. Each regular polygon has a dihedral group of symmetries
attached to it. In dimension three, each of the three pairs of dual Platonic solids
has a group of symmetries that we will also study.

Symmetries form a group, which can be thought of as a set with the additional
attribute of an associative operation (and an identity and inverses). A group is
abelian if the operation is also commutative. A vector space is an abelian group
with the additional attribute of scalar multiplication by the elements of a specified
field of scalars (e.g. the real numbers R or complex numbers C). The symmetries of
a vector space of dimension n are the general linear group, which can be identified
with n × n invertible matrices, and the central problem of representation theory
is the following. Given a group G (of symmetries), what are the distinct ways
of representing the elements of G as n × n matrices so that the group operation
becomes matrix multiplication?

We will look at differential calculus in one variable and then several variables,
and contrast this with calculus in one complex variable. The notion of a continuous
function is folded into the category of topological spaces, and the notion of a
differentiable function is folded into the category of (differentiable) manifolds.
This will lead us to consider groups (of symmetries) that are also manifolds, and to
the idea of a Lie group, which is vital to understanding particle physics. To find
the representations of such groups, we ultimately turn to algebraic geometry and
homogeneous manifolds of flags which, in a sense, bring us full circle back to sets.
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Coming Attractions∗

§1 Sets and subsets. Permutations (even and odd).

§2 Abelian groups. Number Theory. Quotients. Classification.

§3 Metric Spaces. The Euclidean Groups and Platonic Solids.

§4 Vector Spaces. Characteristic Polynomials. Jordan normal form.

§5 Inner Product Spaces. Gram-Schmidt. Orthogonal transformations.

§6 Groups. Normal subgroups. Group actions.

§7 Group Representations. Classsification of finite group reps.

§8 Character Tables.

§9 One-Variable Calculus. The real numbers. Differentiable functions.

§10 The Complex Derivative.

§11 Multi-Variable Calculus. Differentiability in more variables.

§12 Topological Spaces. The Fundamental Group.

§13 Manifolds. Sheaves of functions.

§14 Topological Groups and Lie Groups. The Circle and SU(2).

§15 Lie Algebras.

§16 Tensor Products.

§17 Algebraic groups.

§18 Polynomial rings and algebraic varieties.

§19 Line Bundles.

§20 Flags (and sets).

§21 Representations of complex Lie groups.

∗ Subject to frequent revision.


