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1. Sets. In this section we look at two categories of sets, both of which implicitly
appear in basic mathematics courses. One is the “small” category of subsets of a
fixed universe set U , in which the identity map is the only symmetry, and the other
is the category of all sets, in which the permutations of the elements of a (finite)
set are its symmetries. We will also discuss how to transfer a symmetry, and the
sign and cycle notation of a permutation.

Subsets. Let U be a fixed “universe” set. The category SubU is defined by:

• The objects of SubU are the subsets S ⊆ U .

• The morphisms of SubU are set inclusions S ⊆ T .

This is a category with very few morphisms. The sets:

hom(S, T )

are either empty (if S is not contained in T ) or else consist of the single “inclusion”
morphism ⊆. Nevertheless, this gives a category since:

• The composition of inclusions is an inclusion, and

• The “reflexive” inclusions S = S are the identity morphisms.

Every object S of SubU has a single morphism (inclusion) to the universe U and
there is a single morphism (inclusion) from the empty subset to each S. Equalities
are the only isomorphisms since S ⊆ T and T ⊆ S together imply that S = T .

Symmetry. The “reflexive” inclusion S = S is the only symmetry of an object S.

Remark. The objects of the category SubU are the elements of the power set
P(U) of U . A category in which the objects are elements of a set is called small.

Counting. If |U | = n, then the power set of U has 2n elements, of which:( n
m

)
are subsets with exactly m ≤ n elements

yielding the familiar sum formula for the rows of Pascal’s triangle:

1 +
(n

1

)
+
(n

2

)
+ · · ·+

(n
n

)
= 2n

Special Properties. The operations:

S ∩ T (intersection), S ∪ T (union) and S (complement)

are defined on objects of SubU , and are often illustrated with Venn diagrams. Even
though the category of subsets is rigid with no interesting symmetries, there is still
interesting mathematics in these operations on subsets of U .

Without reference to a universe set U , we have the category of all sets.

Sets. The category Sets (as previewed in §0) is defined by:

• The objects of Sets are the sets S.

• The morphisms of Sets are the set mappings f : S → T .

Russell’s Paradox. The collection of sets is not a set, i.e. Sets is not small.
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Proof. Suppose on the contrary that U is the set of all sets (including U itself!).
Then

X = {S ∈ U | S 6∈ S} ⊂ U
would be a subset of U , hence also a set.

• Suppose X ∈ X. Then X 6∈ X by the definition of X.

• Suppose X 6∈ X. Then X ∈ X by the definition of X.

This is a paradox. It is an impasse which can only be resolved by revoking the “set”
status of the collection of all sets. Calling it a collection instead seems like fudging,
but it can be done rigorously. We will simply accept the fudging and move on. �

On the other hand the functions from one set to another:

hom(S, T ) = {f : S → T}
do constitute a set. (There is no self-referential issue to create a paradox.)

Special Properties. Two operations on sets, analogous to ∩ and ∪, are:

S × T (Cartesian product) and S t T (Disjoint union)

The first is the set of ordered pairs of elements:

S × T = {(s, t) | s ∈ S, t ∈ T}
and the second is a set that can be divided into complementary subsets, isomorphic
to S and T respectively. One may make use of ordered pairs to construct this by
“marking” the elements of S and T differently, so that we can distinguish elements
they may have in common. E.g.

S t T = {(s,−1) | s ∈ S} ∪ {(t, 1) | t ∈ T} ⊂ (S ∪ T )× {−1, 1}
Example. For sets R,S, T , the composition of functions is a function:

◦ : hom(S, T )× hom(R,S)→ hom(R, T ); (f, g) 7→ f ◦ g
and the associative property asserts that the two functions:

hom(T,U)× hom(S, T )× hom(R,S)→ hom(R,U)

defined by:
(f, g, h) 7→ f ◦ (g ◦ h) and (f, g, h) 7→ (f ◦ g) ◦ h

are the same.

Remark. The convention for composing functions is responsible for the unfortunate
arrangement of the sets R,S, T in the Cartesian product above. Aesthetically, one
might want to see the composition as a set mapping from:

hom(R,S)× hom(S, T )→ hom(R, T )

to “cancel” the inner S’s, but this would require reversing the order of composition:
“(g ◦ f)(r) = f(g(r))” which would make us dizzy. So we’ll sacrifice the aesthetics.

If S has m elements and T has n elements, then:

S × T has mn elements and S t T has m+ n elements

so these operations are intimately related to the arithmetic of natural numbers.

Warning. Keep in mind that the disjoint union of S and T is not their ordinary
union since elements in the intersection of S and T are distinct in the disjoint union.
For example, S t S is not the set S, but rather two copies of the set S.
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More Properties. The image via f : S → T of a subset R ⊂ S is:

f(R) = {f(s) | s ∈ R} ⊆ T

and f is surjective if f(S) = T . The inverse image of U ⊆ T via f is the subset:

f−1(U) = {s ∈ S | f(s) ∈ U} ⊆ S

and f is injective if:

f−1({t}) =

 ∅ if t 6∈ f(U)

a singleton set {s} that we use to define s := f−1(t) otherwise

As a function from S to f(S), an injective function has a two-sided inverse
function f−1 : f(S)→ S, and if f is surjective, then f−1 is the inverse of f itself.

Counting. If S has m elements and T has n elements, then:

(i) hom(S, T ) has nm elements,

(ii) the set of injective functions in (i) has n(n− 1) · · · (n−m+ 1) elements,

(iii) if n = m, then the set of isomorphisms in (i) has n! elements.

Remarks. The surjective functions from S to T (when m > n) are much harder
to count than the injective functions (when m < n). In the category of sets, the
empty set ∅ has an “empty” function f : ∅ → T to each set T , including the empty
set itself (the identity morphism 1∅). There is an isomorphism between finite sets
S and T if and only if S and T have the same number of elements, and in that
case a function f : S → T is an isomorphism if and only if it is injective. Thus (iii)
follows from (ii). A pair of infinite sets is said to have the same cardinality if and
only if there is an isomorphism (bijective function) between them.

For each natural number n ∈ N, let:

[n] = {1, 2, ..., n}

An isomorphism f : [n]→ S is called an ordering of a set S with n elements.

Symmetry. We begin with some general remarks about symmetries in a category.

If f : S → T is an isomorphism and σ : S → S is a symmetry of S, then:

f ◦ σ ◦ f−1 : T → T

is a symmetry of T with inverse f ◦ σ−1 ◦ f−1.

Note. We may define this without parentheses since the composition is associative.
Notice also that for all symmetries σ and τ of S,

f ◦ (σ ◦ τ) ◦ f−1 = (f ◦ σ ◦ f−1) ◦ (f ◦ τ ◦ f−1)

and that f ◦ 1S ◦ f−1 = 1T and f ◦ σ ◦ f−1 = f ◦ τ ◦ f−1 if and only if σ = τ .

Via this transfer, the symmetries of S are in bijection with symmetries of T , and
inverses and compositions carry over to inverses and compositions (in §5, we will
see that this transfer of symmetries is an isomorphism in the category of groups).

In the category Sets of sets, an ordering transfers the symmetries of [n] to the
symmetries of a set S with n elements, and so any property of the symmetries of
finite sets is a consequence of the corresponding property of the symmetries of [n].
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The Sign of a Permutation. Given f : [n]→ [n] in the category Sets, let:

sgn(f) =
∏

1≤i<j≤n

f(j)− f(i)

j − i

Remark. The factors of the product are unchanged if i and j are reversed:

f(j)− f(i)

j − i
=
f(i)− f(j)

i− j
so the factors only depend on the subsets {i, j}, and not their ordering.

The following Proposition justifies referring to this as the sign of a permutation
of the n numbers 1, 2, ..., n.

Proposition 1.1. (a) sgn(f) = 0 if and only if f is not a symmetry.

(b) If σ : [n]→ [n] is a symmetry, then sgn(σ) = 1 or −1.

(c) If f, g : [n]→ [n] and h = g ◦ f , then sgn(h) = sgn(f) · sgn(g).

Proof. A function f : [n]→ [n] fails to be a symmetry if and only if f(i) = f(j)
for some i 6= j, if and only if sgn(f) = 0. This is (a).

For (b), since σ is a symmetry, it follows that the pairs {σ(i), σ(j)} vary over all
two-element subsets of [n] as {i, j} vary over all the two-element subsets of [n].
Thus

∏
i<j |σ(j) − σ(i)| =

∏
i<j |j − i| and

∏
i<j(σ(j) − σ(i)) = ±

∏
i<j(j − i),

which gives (b). Notice that it may be the case that i < j but σ(i) > σ(j). In fact,
the number of such “order switchings” determines whether sgn(σ) is +1 or −1.

For (c), if f or g fails to be a symmetry then h fails and sgn(h) = 0 = sgn(f)·sgn(g).
Otherwise, g in particular is a symmetry, and:

sgn(h) =
∏
i<j

f(g(j))− f(g(i))

j − i
=
∏
i<j

f(g(j))− f(g(i))

g(j)− g(i)
· g(j)− g(i)

j − i

The product of the second factors gives sgn(g), and the product of the first factors
(and the remarks above) gives sgn(f). �

Transpositions. A symmetry σ of [n] transposes i and j 6= i if:

σ(i) = j, σ(j) = i and σ(k) = k for all k 6= i, j

in which case we write σ = ti,j . (Notice that ti,j ◦ ti,j = 1[n].)

Proposition 1.2. (a) The sign of each transposition ti,j is −1.

(b) Every symmetry of [n] can be built by composing the transpositions:

t1,2, t2,3, ...., tn−1,n (in some order, often with repetitions)

Proof. To see (a), suppose i < j. Then the pair {i, j} switches order under ti,j
to {j = ti,j(i), i = ti,j(j)} as do the 2(j− i− 1) pairs {i, k} and {k, j} for i < k < j
and no other pairs! Thus the sign of ti,j is the product of an odd number of −1’s.

To see (b), suppose that σ is a symmetry of [n] and σ(n) = m. Then

tn−1,n ◦ · · · ◦ tm,m+1 ◦ σ
sends n to n, and is therefore a symmetry of [n− 1]. Call this τ . By induction on
n, we may assume that τ is built from the transpositions t1,2, ...., tn−2,n−1 and then
(b) follows, since σ = tm+1,m ◦ · · · ◦ tn−1,n ◦ τ. �
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Example. Applying the proof of (b) to the transposition t1,4 (a symmetry of [4]):

τ = t3,4 ◦ t2,3 ◦ t1,2 ◦ t1,4, where τ(1) = 3, τ(2) = 1, τ(3) = 2

and applying the proof again, t2,3 ◦ τ = t1,2 and so:

t2,3 ◦ (t3,4 ◦ t2,3 ◦ t1,2) ◦ t1,4 = t1,2

Undoing the compositions and using t = t−1, we obtain the desired composition:

t1,4 = t1,2 ◦ t2,3 ◦ t3,4 ◦ t2,3 ◦ t1,2

Corollary 1.3. If σ is a symmetry of [n], and σ = ti1,j1 ◦· · ·◦tim,jm is an expression
of σ as a composition ofm transpositions (which exists by Proposition 1.2 (b)), then:

sgn(σ) = (−1)m

Since the sign is well-defined, it follows that if σ = ti1,j1 ◦ · · · ◦ til,jl is another such
expression, then l and m are either both even or both odd.

Definition 1.4. A permutation σ is even if sgn(σ) = +1 and odd if sgn(σ) = −1.

Cycle Notation is an extremely useful way of recording the symmetries of [n].

For a symmetry σ, a cycle (or orbit) is a sequence starting at some m ∈ [n]:

m,σ(m), (σ ◦ σ)(m) = σ2(m), (σ ◦ σ ◦ σ)(m) = σ3(m), ....

Of course this list eventually repeats, but in fact the list cycles. That is:

Proposition 1.5. Given σ and m, there is an integer d > 0 such that:

m,σ(m), ...., σd−1(m) cycle through different numbers, and σd(m) = m

Proof. Eventually there are repetitions in the sequence. Let:

σk(m) = σk+d(m)

be a repetition with the smallest “gap” between them. Then all the elements:

σk(m), σk+1(m), ....., σk+d−1(m)

are different, and by applying (σ−1)k to each of these, we get the Proposition. �

The cycle notation for a symmetry σ of [n] starts with the cycle:

1, σ(1), · · · , σd1−1(1)

and encloses it in parentheses. Then it takes the smallest number not in the cycle
above and uses it to build a second cycle that does not overlap with the first:

m,σ(m), · · · , σd2−1(m)

and continues on until all numbers from 1 to n are in exactly one of the cycles.

Example. The symmetry of [5] given by:

σ(1) = 3, σ(2) = 4, σ(3) = 5, σ(4) = 2, σ(5) = 1

has as its first cycle: (1 3 5)

and then as its second cycle: (2 4)

so that in cycle notation, we would write σ = (1 3 5)(2 4).

Notice that all the values of σ(m), and therefore all the information about the
symmetry σ is recovered from the cycle notation.
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Example. There are six permutations of [3].

• The identity 1[3] = (1)(2)(3) is an even permutation.

• The three transpositions are odd permutations.

t1,2 = (1 2)(3) and t1,3 = (1 3)(2) and t2,3 = (1)(2 3)

• Two additional permutations, both of which are even.

(1 2 3) = t1,3 ◦ t1,2 and (1 3 2) = t1,2 ◦ t1,3

Assignment 1.

1. Sketch the directed graph picture for the category Sub[3].

2.∗ How many surjective functions are there from [m] to [2]?
Devise a strategy for counting all the surjective functions from [m] to [n].

3. Create a 6× 6 composition table for the symmetries of [3].
(Since composition is not commutative, let’s agree that σ ◦ τ goes in the box in
the row corresponding to σ and the column corresponding to τ).

4. Find all the symmetries of [4], their cycle notation and their signs.
Devise a strategy for finding all the symmetries of [n].
How many even permutations of [5] are there?

Extended Exercise. The Cartesian product X × Y of X and Y in the category
Sets has the following property:

• There are projection functions p : X × Y → X and q : X × Y → Y .

• If S is any set with functions f : S → X and g : S → Y , then

(f, g) : S → X × Y defined by (f, g)(s) = (f(s), g(s))

has the property that p ◦ (f, g) = f and q ◦ (f, g) = g.

Moreover, (f, g) is the unique function in hom(S,X × Y ) with this property!

Let X and Y be objects of a category C.
Definition 1.A. The product of X and Y (if it exists) is a triple:

(Z, p : Z → X, q : Z → Y )

with the following universal property:

To each triple (S, f : S → X, g : S → Y ) there is a unique h ∈ hom(S,Z) with:

f = p ◦ h and g = q ◦ h
5. Show that the intersection is the product in the cateogry SubU ! That is,
(S ∩ T, S ∩ T ⊆ S, S ∩ T ⊆ T ) is the product of S and T in the category SubU .

Definition 1.B. The coproduct of X and Y (if it exists) is a triple:

(Z, i : X → Z, j : Y → Z)

with the universal property

To each triple (S, f : X → S, g : Y → S) there is a unique h ∈ hom(Z, S) with:

f = h ◦ i and g = h ◦ j
7. Find the coproduct of X and Y in the category of sets.

8. Find the coproduct of S and T in the category of subsets of U .


