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Categories

Definition. A category C consists of:

(a) A collection Ob(C) of objects X,Y, Z etc

(b) A collection HomC(X,Y ) of morphisms (arrows) f : X → Y between objects

with the following properties:

• there is a distinguished identity element 1X ∈ Hom(X,X) for each X and

• a binary composition operation on concurrent (tip-to-tail) arrows:

◦ : Hom(Y,Z)×Hom(X,Y ) → Hom(X,Z); (g, f) 7→ g ◦ f
that satisfy:

• the 1X morphisms are two-sided identities: i.e. f ◦ 1X = f and 1Y ◦ f = f and

• composition of arrows is an associative operation:

(h ◦ g) ◦ f = h ◦ (g ◦ f) for all triples of concurrent arrows
Remark. The notion of a collection (rather than a set) is necessary, for example,
to avoid Russell’s paradox within the category of sets. We will ignore such issues
here and implicitly assume that our categories are small, i.e. that we can treat our
objects and arrows as elements of a set.

Definition. (i) Morphisms f : X → Y and g : Y → X are two-sided inverses if:

f ◦ g = 1Y and g ◦ f = 1X

(ii) A morphism with a two-sided inverse is an isomorphism.

(iii) End(X) = HomC(X,X) are the endomorphisms of X, and

(iv) Aut(X) (the automorphisms of X) are the isomorphisms in End(X).

Remark. Aut(X) is a group, usually not abelian.

Before we get to the main examples, we offer two more definitions.

Definition. (i) An object X of C is an initial object if:

Hom(X,Y ) is a singleton, for each object Y of C
(ii) An object Z of C is a final object if:

Hom(Y, Z) is a singleton, for each object Y of C

Remark. Any two initial (or final) objects are isomorphic via a unique isomorphism.

Examples. (a) In the category of sets (and set mappings), 1X is the identity, the
bijections are the isomorphisms and the permutations are the automorphisms. The
empty set is the initial object, and each singleton set is a final object.

(b) The power set P(X) of a set X is the category in which the objects are the
subsets of X (including the empty set), the set inclusions S ⊆ T are the morphisms,
so that in particular, each HomC(S, T ) is either empty or else a singleton, and every
endomorphism is an isomorphism (which is most unusual). The initial object is the
empty set and X is the unique final object.
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(c) To each category C there is an opposite category Cop that shares the same
objects and arrows, but reverses the direction of the arrows (and the ordering of
arrows in the composition operation). Note that an initial object of C is a final
object in Cop and vice versa. For example, the opposite category of the power set
reverses the notion of “being contained in” a superset to “containing” a subset.

Definition. (i) The product (if it exists) of a pair of objects X,Y in a category C
is an object with a pair of projection morphisms:

(X × Y, p : X × Y → X, q : X × Y → Y )

that is universal, in the sense that given any other object with pair of morphisms
(Z, f : Z → X, g : Z → Y ) there is a unique morphism, which we will denote by
(f, g) : Z → X × Y such that p ◦ (f, g) = f and q ◦ (f, g) = g.

(ii) A product in Cop is a coproduct in C (with injection morphisms i, j).

Remark. As a result of the universal property, any two products (or coproducts)
are isomorphic by a uniquely defined isomorphism, which is why we took the liberty
of naming the product X × Y , which looks canonical.

Examples. (a) The Cartesian product (with projections) is the product in the
category of sets and the disjoint union (with inclusions) is the coproduct.

(b) The intersection (with inclusions) is the product in the power set of a set X.
The union (with inclusions) is the coproduct.

The next two examples relate to commutative rings with 1.

(c) The objects of the category CRing are commutative rings with 1 and the
morphisms are ring homomorphisms. The commutative ring Z is the unique initial
object and the zero ring (with 0 = 1) is the unique final object. The product of
rings (with projections) is the product and we will see in the next section that the
tensor product (over the ring Z) is the coproduct.

(d) Fix a commutative ring R with 1. The objects of the category ModR of R-
modules are the R-modules M and the morphisms are R-module homomorphisms
f : M → N . In this case, the zero module 0R is both the (unique) initial and
(unique) final object. Moreover, the direct sum (of R-modules) is both product
(with projections) and coproduct (with i : M → M ⊕ N given by i(m) = m ⊕ 0
and j(n) = 0⊕ n defining j).

More Properties of the Category ModR of R-Modules.

(i) Each collection of morphisms is an abelian group. In fact,

HomR(M,N) is an R-module, and

the composition is bilinear map on R-modules, i.e.

(rf + sg) ◦ h = r(f ◦ h) + s(g ◦ h) and e ◦ (rf + sg) = r(f ◦ g) + s(f ◦ h)

for morphisms f, g : M → N and h : L → M, e : N → P , and r, s ∈ R.

(ii) Each f : M → N gives rise to the following R-modules:

ker(f) = f−1(0), coim(f) = M/ ker(f), im(f) = f(M), coker(f) = N/f(M)

with ker(f) ⊂ M , im(f) ⊂ N and quotient maps M → coim(f) and N → coker(f).
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Moreover, by the first isomorphism theorem:

coim(f) ∼= im(f) (via the first quotient map)

and the following universal properties of the kernel and cokernel hold:

UK: A morphism g : L → M satisfies f ◦ g = 0 if and only if:

g : L
g→ ker(f) ⊂ M for a unique map to the kernel, and

UC: A morphism h : N → P satisfies h ◦ f = 0 if and only if:

h : N → coker(f)
h→ P for a unique map from the cokernel

Remark. We say above that g (resp h) factors through the kernel (resp the cokernel).

One more definition gives categorical analogues of “injective” and “surjective.”

Definition. Let f : X → Y in a category C. Then
(a) f is an epimorphism if g1 ◦ f = g2 ◦ f implies g1 = g2 (and vice versa) for all

objects Z and morphisms g1, g2 : Y → Z.

(b) f is a monomorphism if f ◦ h1 = f ◦ h2 implies h1 = h2 (and vice versa) for
all objects W and morphisms h1, h2 : W → X.

Examples. (a) In the category of sets and set mappings:

epimorphism = surjective map, and monomorphism = injective map

(b) In the power set category, every morphism is both mono and epi!

(c) In CRing, Z ⊂ Q is both a monomorphism and epimorphism!

Proposition 1. Like the category of sets, within the category ModR,

• f : M → N is an epimorphism if and only if f is a surjection (of sets),

• f : M → N is a monomorphism if and only if f is injective.

• f : M → N is an isomorphism if and only if f is a bijection.

Definition. A category C is abelian if:

(i) All collections HomC(X,Y ) are abelian groups, and composition is bilinear.

(ii) There is a unique zero object 0 of C that is both initial and final.

(iii) Products and coproducts of objects of C exist and are isomorphic, with:

0 = q ◦ i : X → X × Y → Y and 0 = p ◦ j : Y → X × Y → X

for the universal projections p, q and injections i, j.

(iv) To each morphism f : X → Y , there is a uniquely associated:

(a) kernel monomorphism k : K → X and

(b) cokernel epimorphism c : Y → C such that:

UK: Each g : W → X with f ◦ g = 0 factors (uniquely) through the kernel via:

g = k ◦ g
UC: Each h : Y → Z with h ◦ f = 0 factors (uniquely) through the cokernel:

h = h ◦ c
(v) Every monomorphism is a kernel and every epimorphism is a cokernel .
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How to Use these Axioms. The prototype for an abelian category is the category
of abelian groups, or, more generally, the category of R-modules. These axioms
are fundamental to the art of “diagram chasing,” which is central to Homological
Algebra. The following Propositions are a starter kit for the use of these axioms.

Let C be a category satisfying (i)-(v), i.e. an abelian category.

H0. The zero morphism 0 ∈ Hom(X,Y ) (in (i)) is the unique morphism:

X → 0 → Y

that factors (uniquely) through the zero object (from (ii)).

Proof. Hom(X, 0) and Hom(0, Y ) are singletons, hence zero abelian groups,
and the Proposition therefore follows from bilinearity of composition.

H1. f ∈ Hom(X,Y ) is a monomorphism if and only if k : 0 → X is the kernel.

Proof. All the canonical morphisms i : 0 → X (from (ii)) are monomorphisms.
If f : X → Y is a monomorphism and h : W → X satisfies f ◦ h = 0 = f ◦ 0, then
h = 0 (by the monomorphism assumption) and so h factors through k : 0 → X
(by H0). Conversely, if k : 0 → X is the kernel of f and h1, h2 : W → X satisfy
f ◦ h1 = f ◦ h2, then f ◦ (h1 − h2) = 0 (bilinearity), and so h1 − h2 factors through
the kernel, i.e. (by H0), h1 − h2 = 0, and h1 = h2. □

CoH1. f is an epimorphism if and only if c : Y → 0 is the cokernel.

H2. f is an isomorphism if and only both the kernel and cokernel are zero.

Proof. One direction is clear. Let f : X → Y and f−1 : Y → X be inverses.
Given h1, h2 : W → X, if f ◦h1 = f ◦h2, then h1 = f−1 ◦f ◦h1 = f−1 ◦f ◦h2 = h2.
Given g1, g2 : Y → Z, if g1 ◦ f = g2 ◦ f , then g1 = g1 ◦ f ◦ f−1 = g1 ◦ f ◦ f−1 = g2.
Thus f is both a monomorphism and an epimorphism. Now use H1.

Conversely, given f : X → Y that is both a mono and epi, then by (v), f : X → Y
is a kernel of some g : Y → Z since f is a monomorphism, so g ◦ f = 0 ◦ f and
g = 0 since f is an epimorphism. But then the morphism 1Y : Y → Y factors
through the kernel of g, giving the inverse f−1 = 1Y : X → Y by the universal
property, factoring 1Y through the kernel. It is then immediate, by construction,
that f ◦ f−1 = 1Y . But now f−1 ◦ 1Y ◦ f and 1X satisfy f ◦ (f−1 ◦ 1Y ◦ f) = f ◦ 1X ,
so again since f is a monomorphism, we have f−1 ◦ f = f−1 ◦ 1Y ◦ f = 1X , and
f−1 is a two-sided inverse. □

The curious reader may be wondering about the (co)image of a morphism in an
abelian category C. Never fear, they are still accessible from the axioms.

Definition. The image of f : X → Y is the kernel of the cokernel:

f ⇝ c : Y → C ⇝ i : I → Y

(which is a monomorphism, since it is a kernel). Likewise, the coimage:

f ⇝ k : K → X ⇝ ci : X → CI

is the cokernel of the kernel, and then our final (for now) tool in the kit is:

H3. The coimage and image are isomorphic, via the double lift:

f : X → Y ⇝ 0 = c ◦ k : K → C ⇝ c ◦ k : CI → I

that is both a monomorphism and epimorphism (Exercise). Now use H2.
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Example. The categories FGModR of finitely generated R-modules are not abelian
categories, in general, since kernels of morphisms of finitely generated modules need
not be finitely generated. All the other axioms, however, still hold, so when R is a
Noetherian ring, the submodules of finitely generated modules (i.e. the kernels)
are in the category of finitely generated modules, and this category of abelian.

This includes the categories of finite dimensional vector spaces over k and finitely
generated abelian groups, but also the categories of finitely generated modules over
polynomial rings k[x1, ..., xn] or Z[x1, ..., xn], which are much more interesting.

We’ll finish this section with another abelian category of modules.

Definition. (i) A Z-grading on a commutative ring S• with 1 ∈ S0 is a direct sum

S• =

∞⊕
d=0

Sd

into homogeneous (abelian group) summands that are compatible with the product
in the sense that Sd · Se ⊂ Sd+e, i.e. ab ∈ Sd+e whenever a ∈ Sd and b ∈ Se.

(ii) An ideal I ⊂ S• of a graded ring S• is homogeneous if:

a = a0 + · · ·+ ad ∈ I ⊂ S• ⇒ ai ∈ I for all i

i.e. if I is the direct sum: I =
⊕∞

d=0 Id with Id = I ∩ Sd.

(iii) A ring homomorphism f : S• → T• is graded if f(Sd) ⊂ Td for all d.

This gives rise to the category GrRing of graded (commutative) rings with 1.

Proposition 2. The kernel ker(f) of a graded homomorphism f : S• → T• of
graded rings is a homogeneous ideal. Conversely, given a homogeneous ideal I ⊂ S•
in a graded ring, the quotient ring is graded:

S•/I =

∞⊕
d=0

Sd/Id

and the ring homomorphism f : S• → S•/I is a graded ring homomorphism.

Example. The polynomial ring S• = k[x0, ..., xn] is graded by degree (yeah, when
we speak of graded polynomial rings, we usually start the variables with x0) , i.e.
each polynomial of degree d is uniquely a sum: p = p0 + · · · + pd of homogeneous
polynomials (sums of monomials

∏
xdi
i of the same degree d =

∑
di). Thus:

S• =

∞⊕
d=0

k[x0, ..., xn]d

and the summands Sd are finite dimensional vector spaces over S0 = k. Recall that
S• is Noetherian (by the Hilbert Basis Theorem) and so every homogeneous ideal
I ⊂ S• is generated by finitely many homogeneous polynomials. Note also that
there is one homogeneous ideal to rule them all, namely:

m =
⊕
d>0

Sd

the unique maximal homogeneous ideal in S•.

Fix now a graded commutative ring S• with 1 ∈ S0.
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Definition. An S•-module M• with a direct sum (abelian group) decomposition:

M• =
⊕
d∈Z

Md

is a graded S•-module if Sd ·Me ⊂ Md+e for all d, e.

Note. Unlike S•, a module M• may have homogeneous elements of any degree.

Examples. (a) Homogeneous ideals are graded modules.

(b) For each e ∈ Z, the e-twisted free module is:

S(e) =
⊕
d=−e

Se+d (i.e. S(e) in degree d is the same as S in degree e+ d)

Definition. An S•-homomorphism f : M• → N• of graded S-modules is graded if:

f(Md) ⊂ Nd for all d

Example. Multiplication by b ∈ Se defines a graded homomorphism:

b : S → S(e); a 7→ ab ∈ Sd+e = S(e)d for a ∈ Sd

of graded modules and more generally, b : S(n) → S(n+ e) defined the same way.
In particular, each principal homogeneous ideal I = ⟨b⟩ for b ∈ Se is the image of
the twisted S-module S(−e) via the graded homomorphism:

b : S(−e) → I ⊂ S

and if b is not a zero divisor in S, then this is an isomorphism of graded modules.

More generally still, if M• is a graded S-module and m ∈ Me is homogeneous,
then m : S(−e) → M•; a 7→ am is a graded S-module homomorphism, and if
M• is generated by homogeneous elements m1, ...,mN of degrees e1, ..., eN , then we
obtain a surjective graded homomorphism:

N⊕
i=1

S(−ei) → M•; (a1, ...., aN ) 7→ a1m1 + · · ·+ aNmN

Thus in particular, the degrees of the summands of a finitely generated graded
module M• are bounded from below, and if S0 = k and Sd are finite-dimensional
vector spaces over k, then each Md is a finite-dimensional vector space over k, and
we obtain the following numerical invariant of M•:

Definition. The Hilbert function hM : Z → Z of M• is defined by:

hM (d) = dimk Md

Extended Exercise. Show that the categories GrModS of graded S•-modules over a
graded commutative ring S• are abelian categories and that when S• is Noetherian,
the category of finitely generated graded S•-modules is also abelian.


