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PIDs, UFDs and Noetherian Rings

Let R be a commutative ring with 1.

Definition. u ∈ R is a unit if uv = 1 for some v ∈ R.

Remark. The subset R∗ ⊂ R of units is an abelian group (with multiplication).

Examples. (i) Z∗ = {±1}
(ii) (Z/nZ)∗ consists of the cosets m+ nZ for which gcd(m,n) = 1.

(iii) R[x]∗ = R∗ (unit constants) but R[[x]]∗ = (unit constants) + anything.

Let D be an integral domain.

Definition. (a) An ideal I ⊂ D is principal if I = ⟨a⟩ for some a ∈ D.

(b) D is a principal ideal domain (PID) if every ideal in D is principal.

Note. We will allow for ⟨u⟩ = D to be an ideal in this discussion.

Observation. We say nonzero elements a, b ∈ D are associated if ⟨a⟩ = ⟨b⟩, which
is the case if and only a = bu and b = av for u, v ∈ D, in which case a = avu and
1 = vu by cancellation. Thus the set of nonzero principal ideals is in bijection with:

{aD∗| a ∈ D − {0}} = (D − {0})/D∗

which has a commutative multiplicative structure, but isn’t an abelian group since
each a ∈ D − {0} that is not a unit has no multiplicative inverse, by definition.

Examples. (i) Fields k are the simplest PIDs. They have only the zero ideal.

(ii) The power series rings k[[x]] have only the zero ideal and ⟨xn⟩ for each n ≥ 1.
In particular, they have only one maximal ideal.

(iii) Z has only the zero ideal and the ideals ⟨n⟩ = ⟨−n⟩ for n ≥ 1.

(iv) Polynomial rings k[x] (coefficients in a field!) are PID’s, as we see below:

Definition. A Euclidean domain is a domain D that supports a function:

f : D − {0} → Z≥0

with the property that for all a, b ∈ D − {0}, there exist q, r ∈ D such that:

a = bq + r

with r = 0 or r ̸= 0 and deg(r) < deg(b).

Examples. k[x] with polynomial degree, and Z with f(n) = |n|.
Proposition 1. Every Euclidean domain D is a PID.

Proof. Let I ⊂ D be a nonzero ideal, and let d ∈ I − {0} minimize f(s) ∈ Z≥0

over all s ∈ I−{0}. Then for all s ∈ I−{0}, we have s = dq for some q ∈ D by the
definition of a Euclidean domain. Thus ⟨d⟩ ⊂ I ⊂ ⟨d⟩ and I = ⟨d⟩ is principal. □

Remark. The element d ∈ I is called a greatest common divisor of I.

The notion of a divisor is important in commutative ring theory in general.

Definition. (i) a ∈ R divides s ∈ R if s = ab for some b ∈ R. This is written a|s,
and we say a (and b) is a divisor of s.

(ii) a is a common divisor of a subset S ⊂ R if a|s for all s ∈ S, i.e. if ⟨S⟩ ⊂ ⟨a⟩.
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Recall that a prime (natural) number p is defined by the property that 1 and p
are its only divisors, and p ̸= 1. This is, unfortunately, not what algebraists mean
by a prime element of a general commutative ring.

Definition. (a) A nonzero element a ∈ D is irreducible if the only divisors of a are
units and associates of a, and a is not itself a unit.

(b) a ∈ D is prime if a is not a unit, not zero, and ⟨a⟩ is a prime ideal, i.e.

a|bc implies that a|b or a|c
Proposition 2. All prime elements of a domain D are irreducible.

Proof. Suppose a is prime and a = bc. Then either a|b, in which case:

b = ad and a = bc = bad, so bd = 1

in which case b is a unit, or else a|c and c is a unit by the same argument. □

Prime elements are even more striking in a PID.

Proposition 3. In a PID, all prime elements generate maximal ideals.

Proof. Every prime ideal ⟨a⟩ ⊂ D is contained in a maximal ideal m = ⟨b⟩
(Zorn’s Lemma) which is also principal since D is a PID. Thus a = bc for some c.
Because a is prime, either a|b, in which case b ∈ ⟨a⟩ and so ⟨a⟩ = ⟨b⟩ is maximal,
or else a|c, in which case c = ad and a = bad so 1 = bd and b is a unit. This latter
option is a contradiction, since by assumption, ⟨b⟩ ≠ D. □

In a Euclidean domain, even more is true.

Proposition 4. Every irreducible element of a Euclidean Domain is prime.

Proof. Suppose a ∈ D is irreducible and a divides bc but does not divide b.
Then the greatest common divisor of a and b is 1 (or any unit) since it divides a
and is not associated to a (because then a would divide b). So 1 = ad + be has a
solution for d, e ∈ D and then a divides c = adc+ bce. □

Corollary. If f(x) ∈ k[x] is irreducible and non-constant, then k[x]/⟨f(x)⟩ is a field.

It behooves us to exhibit an irreducible element of a domain D that isn’t prime.
It is probably about time for us to consider some new examples.

Subrings of Polynomials. Let k[t] be the polynomial ring, and consider:

D = k[t2, t3] ⊂ k[t]

(polynomials without a linear term). Then D is a domain and t2, t3 are irreducible.
However, neither of them is prime, since

t2 · t4 = t3 · t3 but t2 does not divide t3 and t3 does not divide t4

This ring is also not a PID, since the ideal ⟨t2, t3⟩ (the kernel of evaluation at 0) is
clearly not principal. Notice that there is a surjective ring homomorphism:

f : k[x, y] → D; f(x) = t2, f(y) = t3

whose kernel is the ideal ⟨x3 − y2⟩. This shows that D is isomorphic to:

k[x, y]/⟨y2 − x3⟩
which is interpreted as the ring of polynomial functions (in two variables) on the
cuspidal plane curve C = {(a, b) ∈ k2 | b2 = a3} ⊂ k2 since the quotient is by the
ideal consisting of polynomials that vanish identically on C.
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Integer-Like Rings. Let α ∈ C be a complex root of a polynomial:

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0 ⊂ Q[x]

that is irreducible in Q[x]. Without loss of generality, we may assume that

f(x) ∈ Z[x] and gcd(ad, ...., a0) = 1

and let Q[α] ⊂ C be the image of the evaluation homomorphism evα : Q[x] → C.
This is a subfield of C that is isomorphic to Q[x]/⟨f(x)⟩ with basis:

{1, α, α2, · · · , αd−1}

as a vector space over Q. These are the number fields (with complex embeddings).

The polynomial f(x) is monic when ad = 1 and in that case the domain:

Z[α] ⊂ C

is a ring whose additive group (Z[α],+) is isomorphic to Zd (with the same basis).

Consider the quadratic case f(x) = x2 + bx+ c and let Dd2 = ∆ = b2 − 4c, i.e.
D is the discriminant ∆ with all square factors squeezed out of it, Then:

Q[α] = Q[
√
D]

admits a multiplicative norm map N : Q[
√
D] → Q defined by:

N(r + s
√
D) = (r + s

√
D)(r −

√
D) = r2 − s2D

which has the following properties:

(i) The norm N(α) is the product of α with the other root, i.e. N(α) = c ∈ Z.
Moreover, N(β) ∈ Z for every β ∈ Z[α].

(ii) An element β ∈ Z[α] is a unit if and only if N(β) = ±1.

Examples. (a) The Gaussian integers Z[i] with N are a Euclidean domain and the
units in this ring are {1, i,−1,−i}.

(b) Z[
√
−5] with N is not a Euclidean domain. In fact, it isn’t even a PID by

Proposition 4 since the elements 2, 3, 1+
√
−5 and 1−

√
−5 are all irreducible and:

2 · 3 = (1 +
√
−5)(1−

√
−5)

without any of them dividing another. The units in this ring are ±1.

(c) The ring Z[
√
2] has infinitely many units; the solutions to Pell’s equation:

a2 − 2b2 = ±1 (in integers)

which include 1 +
√
2, (1 +

√
2)2, ..... This is a Euclidean domain, with |N |.

We return to nestled ideas to define:

Definition. A commutative ring R is Noetherian if every ascending chain of ideals:

I = I0 ⊂ I1 ⊂ · · · ⊂ R

reaches its maximal element, i.e. there is an n such that:

In = I∞ :=

∞⋃
i=0

Ii
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Remark. Descending chains in reasonable rings may never reach their minimum:
∞⋂

m=0

(pm)Z = 0 but (pn)Z ̸= 0 for any n (and prime p)

However, descending chains of prime ideals are a different matter, as we will see.

Proposition 5. R is Noetherian if and only if every ideal I ⊂ R is generated by
finitely many elements s1, ..., sm ∈ I, i.e.

I = ⟨s1, ...., sm⟩ = {
m∑
j=1

rjsj ranging over all choices of rj ∈ R}

Proof. Consider a chain of ideals I0 ⊂ I1 ⊂ · · · . If the union ideal I∞ is finitely
generated by elements s1, ...., sm, then there is an n ∈ Z for which each si ∈ In,
and then In = ⟨s1, ..., sm⟩ = I∞. Conversely, given an ideal I, consider the chain
I0 = 0 ⊂ ⟨s1⟩ ⊂ ⟨s1, s2⟩ ⊂ · · · ⊂ I, where either In = I, or else sn+1 is chosen to
be in I but not in In. Then eventually ⟨s1, ..., sn⟩ = In = I, because otherwise the
chain of ideals would not reach I∞. □

Note. This proof also shows that any finite set of elements s1, ..., sm ∈ I of an ideal
in a Noetherian ring can be expanded to a finite generating set of the ideal.

Corollary. PID’s are Noetherian.

The Noetherian property (all ideals are finitely generated) holds for far more
rings than the PID property (all ideals are generated by one element). We will see
that the Noetherian property also spills over to submodules of finitely generated
modules over a Noetherian ring. This generalizes the fact that every ascending chain
of abelian subgroups of a finitely generated abelian group reaches its maximum.

Hilbert Basis Theorem. If R is Noetherian then R[x] is Noetherian.

Proof. Suppose J ⊂ R[x] is an arbitrary ideal and for each d ≥ 0, let:

Id = {leading coefficients ad ∈ R of polynomials f(x) = adx
d + · · ·+ a0 ∈ J}

Then each Id ⊂ R is a (finitely generated!) ideal and the ideals form a chain:

I1 ⊂ I2 ⊂ · · · ⊂ In = I∞

reaching its maximum at d = n because R is Noetherian. For each d ≤ n, choose
generators Id = ⟨ad,i⟩ for Id and also choose representative polynomials:

fd,i(x) = ad,ix
d + ...

Then for each d ≤ n and f(x) ∈ J of degree d, there are constants bd,i so that

f(x) = adx
d + ... and g(x) =

∑
bd,ifd,i(x) = adx

d + ...

while if d ≤ n, then there are constants bn,i so that

f(x) = adx
d + ... and g(x) =

∑
bn,ix

d−nfn,i(x) = adx
d + ...

In each case, we conclude that within the ideal generated by all the fd,i

⟨fd,i(x) | 0 ≤ d ≤ n⟩ ⊂ J

there is a polynomial g(x) whose leading term matches the leading term of f(x).
Subtracting this element and proceeding by induction on the degree, we conclude
that f(x) ∈ ⟨fd,i(x) | 0 ≤ d ≤ n⟩, i.e. that J is generated by the fd,i. □
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Corollary. Every quotient ring of Z[x1, ..., xn] or k[x1, ..., xn] is Noetherian.

Remark. The same idea shows that if R is Noetherian, then R[[x]] is Noetherian.

One application of Noetherianness is the following.

Proposition 6. Suppose R is a commutative ring with 1, in which every chain:

I1 = ⟨a1⟩ ⊂ I2 = ⟨a2⟩ ⊂ · · ·
of principal ideals reaches its maximum (which is then also principal). Then every
non-zero non-unit b ∈ R has an irreducible factorization

b = c1c2 · · · cn; ci ∈ R

as a finite product of irreducible elements of R.

Proof. Suppose on the contrary b is not a product of finitely many irreducibles.
Then b is not irreducible, so

b = a1c1 and neither a1 nor c1 is a unit, and ⟨b⟩ ⊂ ⟨a1⟩
is a proper ideal. We may assume a1 is not a product of finitely many irreducibles,
and proceed by induction, generating a sequence of proper inclusions of ideals ⟨b⟩ ⊂
⟨a1⟩ ⊂ ⟨a2⟩ ⊂ · · · violating the assumption on R. □

Corollary. Noetherian rings have irreducible factorization.

Note. The rings Z[
√
−5] or k[t2, t3] are quotients of polynomial rings, hence they

are Noetherian, but in these rings irreducible factorizations are not unique!

Definition. A domain D is a unique factorization domain (UFD) if every non-zero
non-unit a ∈ D factors as a finite product of prime elements of D, in which case
the factorization is unique (up to reordering and associated elements).

Examples. Z and k[x] (and any Euclidean domain) are UFDs.

Proposition 7. A domain D with irreducible factorization is a UFD if and only
if every irreducible element of D is prime.

Proof. (Fill in the details) Prime factorizations are unique, when they exist,
and if an irreducible element has a prime factorization, then it is prime.

Analogous to the Hilbert Basis Theorem, in the next section we will prove:

Gauss’ Lemma. If R is a UFD, then R[x] is a UFD.

But please keep in mind that quotients of UFD’s are not, in general, UFD’s.
We’ve seen two examples above, but the most fundamental example is:

R = k[x, y, z, w]/I with I = ⟨xw − yz⟩
in which x := x+ I, y, z, w are irreducible, but R is constructed on purpose so that:

x · w = y · z
is a non-unique factorization.


