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Localization

Let D be an integral domain.
Definition. A subset S C D is multiplicative if:
0¢5,1€ 8 and s,t €S implies st € §
Examples. (a) The abelian group D* of units in D is multiplicative.
(b) The set {1, f, f2,....} of powers of f # 0 is multiplicative.
(¢) The complement of an ideal I C D is multiplicative if and only if I is prime.

Proposition 1. Given a multiplicative subset S C D, let:
r
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where . .
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and equip S~!D with fraction addition and multiplication:
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Then S~!'D is an integral domain with 0 = %, 1= % and injective homomorphism:
r
f:D — S7'D given by f(r) = 1

Proof. This mainly amounts to proving well-definedness.
(i) ~ is an equivalence relation. Transitivity is the only non-obvious property:
7182 — 1381 = 0,7983 — 1359 =0 =

s2(r183 —1r381) = S3(r182 — ros1) + S1(rass — r3se) =0
= 1183 — 1351 =0
(ii) Addition is determined by passing to common denominators:
no T2 _nss T2
S So 5182 5182
as well as the distributive law and requirement that:
r 1 r

1 s s
which also determines multiplication. But you should check this is well-defined.

(iii) S~1D is an integral domain, since:
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since D has no zero divisors.

Remarks. (a) If S € D*, then f: D — S~!D is an isomorphism with
o osThr
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(b) If S = D — {0}, then S~!D is a field. This is the field of fractions k(D) of
the domain D. All other domains S~ D sit in between D and the field of fractions:

D c S™'D c k(D)
(c) If S ={1, f,...}, then S™'D is denoted by Dy, and:
q: D[z] = Dy; q(x) =1/ f is surjective with kernel I = (1 — fz)
so Dy is a quotient ring of the polynomial ring.

(d) If S = P¢ for P C D, then S7!D is denoted by Dp. This is usually not a
quotient ring of a polynomial ring D1, ..., 2, ] with any (finite) number of variables.
We’ll see this when we prove the Hilbert Nullstellensatz.

Concrete Example. Let D = Z. Then:
(a) k(Z) = Q, the field of rational numbers.

(b) Zy, = Z[L] are the rational numbers whose denominators (in lowest terms)
divide some power of n. Note that:

p1 Dr
where p1, ..., p, are the distinct prime factors of n.

1 1
Loy =Top,..p. = Z[—, ....,

(¢) Z(p) are the rational numbers whose denominators (in lowest terms) are not
divisible by p. Sometimes this is written Z,, which is confusing given (b). In fact,
there are a whole lot of rings that might be written as Z,, so context is everything!

Let D be a UFD. Then an element:
r
- k(D
L e k(D)
is in lowest terms if the prime factorizations of r and s contain no associated
common primes. This ratio is, moreover, unique up to multiplying numerator and
denominator by the same unit in D. A polynomial f(z) € Dlx] is in lowest terms if

the factorizations of the coefficients of f(x) contain no associated common primes.
Gauss’ Lemma relies on:

Proposition 2. If f(x),g(x) € Dx] are in lowest terms, then so is f(z)g(x).

Proof. Let f(z) = agz®+...+ao,g(z) = bex®+---+bg and let p € D be prime.
Then p does not divide all the a’s and it does not divide all the b’s, so:

p divides ag, ...., ax_1 but not ax and p divides by, ..., b;_1 but not b,
for some k < d and [ < e. Then p does not divide the coefficient:
ot appibi—1 Fapby +ap—1bp -
of zF* in the product f(z)g(x). So the product is in lowest terms! O
Now we can prove:
Gauss’ Lemma. If D is a UFD, then D[z] is a UFD.

Proof. First of all, k(D)|x] is a Euclidean domain, so it is also a PID and UFD.
Now suppose f(z) € D[z]. Since a prime in D is also a prime in D[z], we may
remove all the common prime factors of the coefficients of f(z) and write it as

PLec Py g(iE) where g(x) c D[x} is lowest terms



We may factor the polynomial g(x) in the Euclidean domain k(D)[z] to get:
g(x) = hi(x) - - - hs(x) where each h;(z) € k(D)[xz] is prime

There are now unique fractions (in lowest terms) so that the polynomials:

qi(x) = (rz) h;(z) € D[z] are in lowest terms
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and then it follows from the Proposition that both:

g(x) and qi(z)---gs(x) = (H Z) g(x) = (g) g(x) € Dlz] are in lowest terms

It follows that r and s (chosen to have no common prime factors) have no prime
factors at alll So u =r/s € D* and:

f@)=upr-pr-qu(x) - qs(x)
is the desired factorization into primes. O

Example. In Q[z], we have:

2 2 3 3
2_1: - _ - _ _
x (3:1: 3) <2x+2)

which we can put into (slightly inefficient, to play devil’s advocate) lowest terms:
3 /(2 2 2 (3 3

2?2 — 1= (=1)(—z + 1)(x — 1) with the unit u = —1
Eisenstein’s Criterion. If D is a UFD, f(z) € D[z],p € D is a prime and:

and then

(a) p divides all the coefficients of f(z) except the leading coefficient.
(b) p? does not divide the constant term of f(z).
Then f(x) is irreducible as a polynomial in k(D)[z].
Proof. By Gauss’ lemma, if f(x) is reducible in k(D)[xz], then it factors:
f(x) = g(h)h(x) by polynomials of smaller degree in D][z]
Let pD C D be the ideal generated by p and note that pD[x] C D[z] is also a

prime ideal, since:
 Dlal/pDla] = (D/p) ]
By (a) above, if we let f(z) = f(z) 4+ pD][z], then we have:
age? = f(z) = g(x) - h(z) € (D/p)[x]
from which it follows that:
g(z) = bz? and h(z) = cz?=° for some e < d and b,c € D/pD
But then p divides the constant terms of g(z) and h(z), which violates (b). O
Example. The polynomials:

€ Q[z]

are irreducible if and only if @ is a prime number. If a = bc, then 2° — 1 | 2% — 1.
If @ = p is prime, apply Eisenstein to (z 4+ 1)P — 1 using the binomial theorem.
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Next, let P C D be a prime ideal in an integral domain and let:
D C Dp = S7D be the inclusion of domains in Proposition 1
Proposition 3. (a) There is a unique maximal ideal mp C Dp.
(b) There are maps between the set of ideals in Dp and the set of ideals in P:
{ideals Jp C Dp} <> {ideals J C P C D}

JpHDﬁJp:{aeD\%er}; J»—>Jp::{g|a€J,s¢P}/~

that satisfy:

J C (JpﬂD) and (JpﬂD)p =Jp
Moreover, if Q C D is a prime ideal, then Qp C Dp is also prime and Q@ = (QpND).
Thus there is a bijection:

{prime ideals Qp C Dp} <+ { prime ideals Q C P C D}
and in particular, mp maps to P under the bijection.

Example. Consider the prime ideal P = 27Z. Then Zp has only the ideals:
{0} and m* = {ﬂ | 2% divides a and s is odd}
S

but there are lots more ideals contained in 2Z than the ideals 2FZ.

Definition. In general, the ideal sat(J) = Jp N D is called the saturation of J C P
with respect to P and an ideal J C P is saturated if J = sat(J).

The Proposition says that prime ideals are saturated.
Exercise. Check that sat(J) = sat(sat(J)), so saturations of ideals are saturated!
Proof of Prop 3. We already know that I N D C D is an ideal when I C Dp
is an ideal and it is prime when [ is prime. Likewise, if J C D is an ideal, then:
Jp:{g ASA seS}ch
S
is closed under sums as well as products with elements /s, so Jp C Dp is an ideal.
It is a little problematic to think of the ideal in this way, though, because of the

equivalence of fractions, since it is possible to have r/s € Jp without having r € J.
Instead, we will use the alternative formulation:

Jp ={x € Dp | xs € J for some s € S}

Now suppose @ C P C D is prime, and zy € @Qp for some z,y € Dp. Then:
xs1,ys2 € D and zys € @ for some s1, 52,5 € P so (xs1)(ys2)s € Q and xs1 or ysg € Q
so @ p is prime. Moreover, primeness of () implies that

r€Dandrzs € Q =z €Q
from which it follows that Qp N D = Q. The equality Qp = (QpND)p is easy. O

Example. The localizations of polynomial rings:

Elz1, ..., Tn)m, = {ch | f,g € k[z1,...,2,] and g(p) # O}

at the maximal ideal kernels of ev), : k[z1,...,z,] = k; evy(f) = f(p) are the rings
of rational functions that are defined in a neighborhood of p.
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Definition. A commutative ring R with 1 is a local ring if R has a unique maximal
ideal m which (Zorn’s Lemma) necessarily contains all other ideals I C R.

Remark. In a local ring R, every element of the complement m® is a unit.
Aside from the fields, we’ve seen one local ring persistently in our examples:
R = k[[x]] with maximal ideal m = (x)

but now we have a machine for producing local rings (Dp, m) from any pair (D, P)
consisting of a domain and a prime ideal.

We finish with an important class of rings (the next simplest after the fields).
Definition. A Noetherian domain D satisfying:

(i) D is a local ring with (non-zero) maximal ideal m.

(ii) m = (m) is principal
is called a discrete valuation ring (DVR).
Proposition 3. Every element a € D in a DVR is a product:

un” for a unique r and u € D*

Thus the only ideals in a DVR are the principal ideals m" = (z") for r > 1.

Proof. Every irreducible element a € D is of the form:

a = um for u € D*

since a € (m) is divisible by 7, which is not a unit (hence it is an associate of a).
Thus the factorization of an arbitrary: b = a; - - - a, as a product of irreducibles is

b= (uim)--- (upm) = um”
and the uniqueness is clear by cancellation. For the rest of the proof, note that:
(g™ ™y = (ugn) iy <o <, O
Thus in particular, a DVR is a local PID (and conversely).
Let D be a DVR and let k(D) be the field of fractions. Then:
k(D) ={ur" | w € D* and r € Z}

and the mapping:
v:k(D)" = Z; viur")=r
has the following properties:
(i) v(ab) = v(a) + v(b)
(ii) v(a + b) < min(a,b) with equality when v(a) # v(b).
(iii) D ={a € k(D) | v(a) > 0} and m = {a € k(D) | v(a) > 1}.
A mapping from a field to an ordered abelian group satisfying (i) and (ii) is a

valuation, and when the ordered abelian group is Z, then the mapping is a discrete
valuation. Hence the name.

Definition. A domain D with the property that localization Dp at each non-zero
prime ideal is a DVR is called a Dedekind domain.

Remark. In number theory, these are the rings of integers in a number field and in
algebraic geometry, these are the (coordinate rings of) smooth affine curves.



