Abstract Algebra. Math 6310. Bertram/Utah 2022-23.
Modules

Let R be a commutative ring with 1.
Definition. An R-module is an abelian group (M, +) with a multiplication map:
tRxM—>M
that satisfies the following properties:
(i) Multiplication by a € R is an abelian group homomorphism:
a(my +mg) =ami +amg and a-0=0
(ii) Multiplication associates and distributes with the ring operations:
a1(agm) = (a1a2)m and (a1 + as)m = aym + asm
(iii) Ring identities act as identities:

1l-m=m,0-m=0

Definition. A map f: M — N of R-modules is an R-module homomorphism if:
(i) f is a homomorphism of the underlying abelian groups, and:
(ii) f(am) =af(m) for all a € R and m € M.

Examples. (a) Vector spaces over a field k.
(b) All abelian groups are Z-modules with repeated addition as multiplication.

(¢) The product abelian group R™ = Re; @ - - - ® Re,, with scalar multiplication.
These are the free R-modules.

(d) An ideal I C R is an R-module.

(e) If f: R — S is a ring homomorphism, then S is an R-module where the
multiplication is inherited from multiplication in the ring S.

Proposition 1. When R is viewed as an R-module, then the homomorphisms:
f:R—=R

are multiplication by a = f(1). As a consequence, the R-module homomorphisms
of free R-modules are given by multiplication by matrices with entries in R.

Proof. By definition (ii), f(b) = f(b-1) =b- f(1) =b-a for all b € R. The
assembly of the matrix is exactly as in the case of vector spaces. O

Definition. An R-sub-module of an R-module M is a subgroup S C M that is also
closed under multiplication by elements of R.

Example. (a) Anideal I C Ris a sub-module of R itself, thought of as an R-module.
(b) The kernel and image of an R-module homomorphism are sub-modules.
Proposition 2. Given a sub-R-module S C M, the quotient abelian group:
M/S={m+S|meM}/ ~

is an R-module with product a(m + S) = am + S. This is the quotient module.
Moreover, if f : M — N is an R-module homomorphism, then the map

f:M/ker(f) — f(M) given by f(m + K) = f(m) is an isomorphism
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Remark. The cokernel f is the quotient module ¢ : N — N/ f(M).

Example. For the Z-module homomorphsm n : Z — Z, we have the modules:
ker(n) =0 C Z,im(n) = nZ C Z and q = coker(n) : Z — Z/nZ.

Remark. This is a first isomorphism theorem for R-modules, but since sub-modules
and kernels are the same thing (unlike subrings and ideals), we are able construct
the cokernel module. This will be systematized in the notion of an abelian category.

Definition. M is finitely generated if there is a surjective homomorphism:
f:R" - M, of R-modules, in which case M = R"/ker(f) by Proposition 2.

Remark. Recall that in the case of vector spaces, being finitely generated means
having a finite spanning set of vectors. We learned in linear algebra that every
spanning set of vectors has a subset that spans and are linearly independent. We
call such a set a basis of V. The big difference between vector spaces and R-modules
is the non-existence (in general) of bases in the latter case. Note that when a basis
does exist, then by definition, the associated map:

f: R"™ — M is an isomorphism

s0 R-modules with a basis are (isomorphic to) free R-modules, and the novel aspect
of finitely generated R-modules is that they need not be free.

Definition. An element ¢ € M of an R-module M is torsion if it is non-zero and:
at = 0 for some non-zero a € R

Remark. A torsion element in an R-module is analogous to a zero-divisor in R. In
fact, it is a zero-divisor when M = R. Thus, a ring R is a domain if and only if
it has no torsion elements as a module over itself. More broadly, the free modules
D™ over a domain have no torsion elements, and neither do the submodules of free
modules over a domain. It is important, however, to keep in mind that the ring R
needs to be specified when trying to decide whether M has torsion elements or not.

Examples. (i) Every element of Z/nZ is torsion when it is viewed as a Z-module.

(ii) Every non-zero element of the field Z/pZ is not torsion, when viewed as a
module over itself, since with this interpretation, Z/pZ is a domain.

(ii) Only the elements 2 + 6Z, 3 4 6Z and 4 + 6Z (and 0) are torsion when Z/6Z
is viewed as a module over itself. Note that this set is not closed under addition.

Proposition 3. If M is an R-module and R is a domain, then the set:
T ={te M |tis a torsion element} U {0} C T
is a sub-module. It is called the torsion submodule of M.
Proof. Because a domain has no zero-divisors, we can conclude that:
ait; = 0 and aste = 0 implies ajas(t; + t2) = 0 and a1, as # 0 implies a1ag # 0

Thus a sum of torsion elements is torsion, and similarly the product of a torsion
element by a (non-zero) element a € R is torsion. O

We will assume R is a domain until otherwise indicated.
Definition. (a) An R-module M = T of only torsion elements is a torsion module.

(b) An R-module with no torsion elements is torsion-free.



Proposition 4. (a) Any quotient T'/S of a torsion module T is torsion.
(b) Any sub-module S C F of a torsion-free module F' is torsion-free.
(¢) The quotient M /T of any module by its torsion sub-module is torsion-free.
Proof. (a) and (b) are easy to see. As for (c), consider:
a(m+T) =0+ T implies that am € T
which implies that m € T, som+T =0+1T. a

Remark. Thus in particular an R-module with non-zero torsion is not free, and not
a sub-module of a free R-module (assuming always that R is a domain). We will
see that when R is a PID, torsion is the only “obstruction” to freedom.

We turn now to finitely generated modules and the special role of Noetherianness.
For this we may drop the assumption that R is a domain.

Proposition 5. If R is Noetherian and M is a finitely generated R-module, then:

(a) Every increasing chain Sy C S; C -+ C M of sub-modules of M reaches its
maximum S,, = Soo (= U2 ,Sk).

(b) Every submodule of M is finitely generated.

Proof. Since submodules of R (viewed as an R-module) are exactly the ideals
in R, this is a generalization of the definition of a Noetherian ring. The equivalence
of (a) and (b) is exactly as in the case of ideals. Let Se be a chain of submodules
of M and consider the string of surjections of quotients:

Qo=M/Sy = Q1=M/S1 — -+

Then (a) holds if and only if every such string of surjections of quotients of M
terminates; i.e. @ = Qni1 = - = Qoo for some n. It follows immediately that if
M has property (a) and g : M — N is a surjection, then N has property (a).

We have assumed M is finitely generated, i.e. there is a surjection ¢ : R™ — M
from some n. So it suffices to prove (a) for the free modules R™. Now suppose:

KcMandg: M - M/K
and property (a) holds for both K and M /K. Then:
(i) The images ¢(S;) form an increasing chain of submodules of M /K, so:
q(Sq) = q(Say1) = - = ¢(So) for some d, and then
(ii) (SN K) C (Sq41 N K) C ... are an increasing chain of submodules of K, so
SeNK=841NK=-.-=58,NK for some e > d

Suppose s € Soo. Then some s, € S, satisfies ¢(s) = ¢(s.) (since e > d), and
then some k. € S, N K satisfies k., = s — s, € Soc N K. So:

s =ke+ s. €85,
and we have shown that S, = So,. We apply this to the inclusion of the first factor:
R C R™ and the projection ¢ : R" — R"/R = R"!

onto the remaining factors to conclude that if R"~! satisfies (a), then R™ does too.
But then we’re done by induction! [



Corollary. If R is Noetherian, then every finitely generated module M is finitely
presented, i.e. there is a sequence of R-modules:
R™ LR S M0

such that ¢ is surjective, and the image of f is the kernel of ¢ and therefore:

Every finitely presented R-module is (by definition) the cokernel of a matrix:

A=(a;;):R" = R"; a;; €R
Notice that in the case of a Noetherian ring, we can repeat the generations:
R™ — M is surjective, with kernel M’

R™ — M’ is surjective, with kernel M"
R™ — M" is surjective, with kernel M""’
etc

and we can ask whether these modules “improve” in some measurable way with
each successive iteration. We've already seen one instance of this, namely, the fact
that M’, M" ... are submodules of a free module, and therefore have no torsion.

Example. Let k[zg] be the polynomial ring, and consider:
evy : k[zg] — k the evaluation at 29 =0
Then the kernel is the ideal module zok[xo] C k[zo], which is free (of rank one).
Next, consider the polynomial ring k[zg, z1] in two variables, and:
ev(0,0) : k[ro,z1] — k the evaluation at (x¢,z1) = (0,0)
Then the kernel ideal is generated by x¢ and x1, which is the image:
k[zo, z1]? = k[zo,z1]; A = (20, 21)7
and the kernel of this matrix is free, generated by:
k[xo, 1] — k[xo,21]%; B = (—x1,20)
In other words, every pair f, g € k[xg,z1] such that xof + 219 = 0 satisfies:
f=—z1h and g = xoh
for a polynomial h (this follows from the fact that k[xg,x1] is a UFD!

These are the first two cases of the Koszul complez for the k[xq, ..., ,]-module k.



