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More Modules, especially over a PID

An R-module M is freely generated by elements w1, ..., wm ∈ M if:

f : Rm → M ; f(ei) = wi is an isomorphism

Let R be a PID and M be a finitely generated R-module.

Proposition 1. If M ⊂ Rn is a sub-module of a free module, then M is also free.
In fact, there are elements v1, ...., vn ∈ Rn and d1, ...., dm ∈ R for m ≤ n such that:

(i) The v1, ..., vn freely generate Rn.

(ii) Each divi ∈ M and the d1v1, ..., dmvm freely generate M

(iii) Each invariant factor di divides di+1. That is:

⟨dm⟩ ⊂ ⟨dm−1⟩ ⊂ · · · ⊂ ⟨d1⟩
Remark. When R = k is a field, this is the statement that each subspace of kn has
a basis v1, ...., vm ∈ kn of vectors that extends to a basis v1, ...., vn of kn.

Proof. M is finitely generated since R is Noetherian, and a choice of generators
w1, ....., wl for M gives a matrix:

A : Rl → Rn whose image is M

with column vectors w1, ..., wl and entries aij . If A only consists of:

aii = di for i from 1 to m with d1|d2| · · · |dm
Then the Proposition holds with vi = ei the standard basis of Rn and wi = divi.
The goal, then, is to diagonalize the matrix A with the use of automorphisms
(invertible matrices) C ∈ Aut(Rl) and B ∈ Aut(Rn). If we can achieve the desired
diagonal matrix as BAC, then the columns of B−1 are the vectors vi we seek.

In fact, the entries of A already tell us what d1 needs to be, namely:

⟨d1⟩ = ⟨aij⟩
a generator (R is a PID) of the ideal generated by all the entries of A. To this
end, let’s recall that row and column operations (switching rows/columns, adding
a multiple of a row/column to another) are achieved by multiplication with such
matrices B and C (of determinant 1). To this, we add one more operation:

Let a, b ∈ R and suppose ⟨d⟩ = ⟨a, b⟩, so that: ax+ by = d, a = dp, b = dq and
so xp+ yq = 1 for some x, y, p, q ∈ R. Then:

[a b] ·
[

x −q
y p

]
= [d 0]

and the transpose: [
x y

−q p

]
·
[

a
b

]
=

[
d
0

]
show how to apply 2× 2 matrix (augmented by the identity) to modify a matrix A
with elements a = aij , b = ai,k in the same row or b = akj in the same column to
get a new “improved” matrix A. Together with row and column operations, this
allows one to obtain the desired diagonal form of BAC.

Definition. AmatrixD = BAC as above with the divisibility property d1,1| · · · |dm,m

(and no other nonzero entries) is a Smith normal form for A.
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Example. Suppose M ⊂ Z2 is generated by (2, 0) and (0, 3). Then:

A =

[
2 0
0 3

]
multiplied on the left by

B1 =

[
1 1
0 1

]
(to add the second row to the first) gives:

B1A =

[
2 3
0 3

]
which then may be multiplied on the right by:

C1 =

[
−1 2
1 −3

]
to get

B1AC1 =

[
1 −5
3 −9

]
and then multiplied on the left and right by:

B2 =

[
1 0

−3 1

]
and C2 =

[
1 5
0 1

]
to clear the first row and column, to finally get

B2B1AC1C2 =

[
1 0
0 6

]
and since:

B−1 = (B2B1)
−1 =

[
−2 −1
3 1

]
we get desired vectors:

v1 = (−2, 3) and v2 = (1,−1) with v1, 6v2 = (−6, 6) freely generating M

As a corollary, we get the:

Invariant Factor Decomposition for Modules over a PID. If M is a finitely
generated module over a PID R, then M is isomorphic to:

R/⟨d1⟩ ⊕ · · · ⊕R/⟨dm⟩ ⊕Rr

for elements d1|d2| · · · |dm ∈ R.

Proof. Choose a surjection f : Rn → M and apply Proposition 1 to the kernel.
Then:

M = Rn/K = R/d1R⊕ · · · ⊕R/dmR⊕Rn−m

by the choice of basis v1, ...., vn ∈ Rn, with one caveat. If d ∈ R is a unit, then
R/dR = 0 is a superfluous factor, and we will leave those out.

Example. In the example above, (Z⊕ Z)/(2Z⊕ 3Z) = Z/1Z⊕ Z/6Z = Z/6Z.

Corollary. Every finitely generated abelian group is a product of cyclic groups.

Before we prove uniqueness of the collection of summands in the theorem, we
make some remarks about finitely generated modules M over general commutative
rings R with 1 to obtain an alternative decomposition to the invariant factors.
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Definition. (a) Given an ideal I ⊂ R, then:

IM = {
∑
finite

aimi | ai ∈ I,mi ∈ M}

is the product R-module. When I = ⟨a⟩, the product is denoted aM .

(b) The annihilator of a module M is the largest ideal satisfying IM = 0, i.e.

Ann(M) = {a ∈ A | aM = 0}

(c) M is cyclic if M has a single generator, in which case M ∼= R/Ann(M).

Proposition 2. Let S, T ⊂ M be submodules. Then:

0 → S ∩ T
f→ S ⊕ T

g→ S + T → 0

f(m) = (−m,m), g(s, t) = s+ t

is a short exact sequence of R-modules.

The proof of this is left to the reader.

Corollary. If S ∩ T = 0 and S + T = M , then M ∼= S ⊕ T .

Applying this to the invariant (cyclic) factors of a module M over a PID, we get:

Proposition 3. Let d ∈ R (a PID), and let

d = pr11 · · · prkk
be a prime factorization of d, with pi ̸= pj for i ̸= j. Then:

R/⟨d⟩ ∼= R/⟨pr11 ⟩ ⊕ · · · ⊕R/⟨prkk ⟩

Proof. The result follows inductively once we show the following. If a, b ∈ R
share no common prime factor, then:

R/⟨ab⟩ ∼= R/⟨a⟩ ⊕R/⟨b⟩

This in turn follows from Proposition 2, via the two inclusions:

f : R/⟨a⟩ ↪→ R/⟨ab⟩; f(r + aR) = br + abR

and

g : R/⟨b⟩ ↪→ R/⟨ab⟩; f(r + bR) = ar + abR

The UFD property of a PID gives:

R/⟨a⟩ ∩R/⟨b⟩ = 0

and the PID property of a PID gives 1 = ax+ by for some x, y since a, b, by virtue
of sharing no common prime factor, do not lie in any common maximal ideal. Then
f(y + aR) + g(x+ bR) = 1 + abR and so R/⟨a⟩+R/⟨b⟩ = R/⟨ab⟩ □

This leads to a:

Primary Decomposition of Modules over a PID. Every finitely generated
module M over a PID R is a direct sum:

M =
⊕

R/⟨prii ⟩

of cyclic R-modules Ci = R/⟨prii ⟩ with primary annihiator ideals Ann(Ci) = ⟨prii ⟩.

Proof. Apply Prop 3 to each summand of the invariant factor decomposition.
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Uniqueness. The torsion submodule T ⊂ M of a finitely generated module M
over a PID is uniquely determined, and from an invariant factor decomposition, we
obtain:

T ∼= R/⟨d1⟩ ⊕ · · · ⊕R/⟨dm⟩ and M/T ∼= Rr

Since the rank of a free R-module is well-defined, this gives the uniqueness of the
number of free cyclic modules in the decomposition. Moreover, the smallest ideal
(most divisible dm) is also easily determined via:

Ann(T ) = ⟨dm⟩
but for the other factors, we will turn to the primary decomposition. In light of the
well-definedness of the rank r of the free part, we may as well restrict our attention
to torsion finitely generated R-modules T .

Proposition 4. The cyclic summands R/⟨prii ⟩ of a primary decomposition of T
uniquely determine the cyclic summands of an invariant factor decomposition of T .

Proof. For each prime p appearing in the primary decomposition, lay out the
summands in increasing order of the power of p in a single row:

R/⟨p⟩ ⊕ · · · ⊕R/⟨p2⟩ ⊕ · · · ⊕R/⟨prp⟩ ⊕ · · ·
Right justify the rows for the distinct primes and use Proposition 3 to multiply the
prime powers in the columns to obtain each R/⟨di⟩. Thus, for example,

R/⟨dm⟩ = R/⟨prp11 p
rp2
2 · · · ⟩

This procedure is the (unique!) inverse to the factoring procedure. □

Remark. It is an inverse only in the sense that number of cyclic modules of each
type in each decomposition are determined by each other. There are quite a few
automorphisms of T (e.g. reordering the prime factors of the same type) that
negates any attempt to assign a canonical decomposition of either type. We only
can record the number of summands of each type.

Example. T = Z/6Z ⊕ Z/12Z converts to Z/2Z ⊕ Z/4Z ⊕ Z/3Z ⊕ Z/3Z and then
back again, but the order of the Z/3Z factors in the return trip could be reversed,
resulting in a nontrivial automorphism of T . In particular, the subgroup Z/6Z ⊂ T
is not canonically defined.

We now prove the uniqueness of the summands of the primary decomposition.
To do this (and because it is a useful tool for studying modules), we introduce
the localization of an R-module M for a general commutative ring R with 1. This
requires us to make some improvements to our earlier definition since now we cannot
avoid the issue of zero divisors (annihilators) in our multiplicative set.

Localization 2.0. Let R be a commutative ring with 1 (possibly not a domain)
let S ⊂ R be a multiplicative subset and let M be an R-module. Then:

S−1R = {r
s
| r ∈ D, s ∈ S}/ ∼ and S−1M = {m

s
| m ∈ M, s ∈ S}/ ∼

where
r1
s1

∼ r2
s2

if and only if ∃s ∈ S such that s(r1s2 − r2s1) = 0

and
m1

s1
∼ m2

s2
if and only if ∃s ∈ S such that s(m1s2 −m2s1) = 0
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Then ∼ is an equivalence relation and S−1R is a commutative ring with 1 ̸= 0
and S−1M is an S−1R-module. The morphisms:

i : R → S−1R and i : M → S−1M

are not necessarily injective in this setting, though, since:

i(r) = 0 ⇔ sr = 0 for some s ∈ S and i(m) = 0 ⇔ sm = 0 for some s ∈ S

Example. If R = Z and M = Z/6Z and S = {1, 2, 4, 8, ....}, then:

R ⊂ S−1R = { a

2n
| a is odd} ∪ {0}

and

M → S−1M = Z/3Z has kernel 3M with
1

2
·m = 2m

Let p, q ∈ R be two prime elements in a PID.

Proposition 5. Let S = R− qR. Then:

(a) D = S−1R is a DVR with maximal ideal m (i.e. R is a Dedekind domain)

(b) S−1(R/qrR) = D/mr.

(c) S−1(R/prR) = 0 if p is not associated to q.

Proof. The maximal ideal m ⊂ D is S−1qR, generated by q/1, so D is a DVR
and the ideals in D are the powers mr = (qr/1)D = S−1qrR.

If ⟨p⟩ ≠ ⟨q⟩, then pr ∈ S and pr(1− 0) = 0 ∈ R/prR so 1 = 0 in S−1(R/prR).

This only leaves (b), which is the interesting assertion that:

S−1R/S−1qrR = S−1(R/qrR)

which we leave to the reader in its general form.

Proposition 6. If M ⊂ N are R-modules and S ⊂ R is a multiplicative set, then:

S−1N ⊂ S−1M and (S−1N)/(S−1M) ∼= S−1(N/M)

Proof. Exercise.

Proof of Uniqueness. Via localizing as in Proposition 5 for each prime q in turn,
it suffices to show that if D is a DVR and

T = (D/m)r1 ⊕ · · · ⊕ (D/mn)rn

then r1, ..., rn are determined. Note that D/m is a field k, and:

0 = mn/mn ⊂ mn−1/mn ⊂ · · · ⊂ m/mn ⊂ D/mn

is a composition series, in which each successive quotient:

(mi−1/mn)/(mi/mn) ∼= mi−1/mi ∼= k

(by the third isomorphism theorem). Thus, as a k-vector space, D/mn has rank n.
Now we work by induction, multiplying T by powers of m:

mn−1T ∼= (mn−1/mn)rn = krn

so rn is determined by T alone. Next,

mn−2T ∼= (mn−2/mn−1)rn−1 ⊕ (mn−2/mn)rn = V

has dimension rn−1 + 2rn as a vector space over k, so rn−1 is determined, etc. □

Next, we apply this to the problem of finding “canonical forms” of a matrix.
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An Application to Linear Algebra. Recall the following:

Definition. Two n × n matrices A1, A2 : kn → kn are similar if there is an
invertible matrix B : kn → kn such that A2 = BA1B

−1.

Remark. Similarity of matrices is an equivalence relation. If V is a vector space
of dimension n and f : V → V is a linear map. Then a choice of basis kn ∼= V

determines a matrix representation A : kn ∼= V
f→ V ∼= kn, and the matrices for

two distinct choices of basis are similar via the change of basis matrix B.

Recall also:

Definition. Two fundamental polynomials associated to a matrix A are:

(i) The characteristic polynomial of A

χA(t) = det(tIn −A) = tn − tr(A)tn−1 + · · ·+ (−1)n det(A) ∈ k[t] and

(ii) The minimal polynomial (ideal) of f : V → V :

{P (t) ∈ k[t] | 0 = P (f) : V → V } ⊂ k[t]

in which constants c ∈ k are converted to scalar multiplication c : V → V and
multiplication (e.g. t · t) is converted to composition (e.g. f ◦ f) and the minimal
polynomial µf (t) is the unique monic generator of this ideal.

The minimal polynomial of similar matrices is clearly the same since it does not
depend upon the choice of basis of V ! The characteristic polynomial of similar
matrices is also the same since the determinant is a multiplicative function, and so:

det(BAB−1) = det(B) det(A) det(B−1) = det(B) det(A) det(B)−1 = det(A)

and χA(t) = det(tIn−A) = det(B(tIn−A)B−1) = det(tIn−BAB−1). This means
we are justified in reindexing the characteristic polynomial by f :

χf (t) = χA(t) for any matrix representation A of f

Note. The trace of similar matrices is also the same, but trace is not multiplicative!
Instead, the basic identity satisfied by trace is: tr(AB) = tr(BA).

And now for the punchline:

Observation. The choice of a k-linear endomorphism of a k-vector space:

f : V → V

is equivalent to promoting V to a (torsion) k[t]-module Vf via:

t · v = f(v) for v ∈ V

Rational Canonical Form. Decompose the k[t]-module Vf into invariant factors:

Vf
∼= k[t]/⟨d1(t)⟩ ⊕ · · · ⊕ k[t]/⟨dm(t)⟩ with d1(t)|d2(t)| · · · |dm(t)

Each summand is a vector space Vi of dimension ni = deg(di) and

n =

m∑
i=1

ni

and each summand is a (cyclic) k[t]-module, corresponding to the linear map:

fi : Vi → Vi with fi(v) = t · v
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This means that if we choose the basis B = {1, t, · · · , tni−1} for Vi and if:

di(t) = tni + cni−1t
ni−1 + · · ·+ c1t+ c0

then the matrix representing fi in the basis B is:

Ai =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2

...
0 0 · · · 1 −cn−1


This is one of the rational canonical blocks of f in rational canonical form.

A straightforward calculation gives:

χfi(t) = χAi
(t) = di(t) and χf (t) =

∏
χfi(t) =

∏
di(t)

On the other hand, the minimal ideal is the annihilator of the module.

Ann(Vf ) = ⟨dm(t)⟩
and so in particular, we get the:

Cayley-Hamilton Theorem: The characteristic polynomial of f satisfies

χf (f) = 0

i.e. χf is in the minimal polynomial ideal ⟨dm(t)⟩ of f .
Jordan Canonical Form. Assume k is algebraically closed so the primes

pi ⊂ k[t] are pi = ⟨x− λi⟩ for λi ∈ k

Then the primary decomposition of Vf has the form:

Vf =
⊕

k[t]/⟨(x− λi)
ni⟩ =

⊕
Vgi

(maybe with repeating “eigenvalues” λi). For each summand, choose the basis:

B = {(t− λi)
ni−1, ....., (t− λi), 1}

for Vgi with gi(v) = t · v. Then the matrix representing gi in this basis is:

Ai =



λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
0 0 λi · · · 0 0

...
0 0 0 · · · λi 1
0 0 0 · · · 0 λi


which is one of the Jordan blocks of f in Jordan canonical form.

Definition. f is semi-simple if it is diagonal in Jordan canonical form, i.e. if all
the primary summands of Vf are of the form k[t]/⟨x− λ⟩.
Example. The following two matrices are similar: 1 1 0

0 1 1
0 0 1

 ∼

 0 0 1
1 0 −3
0 1 3


passing from Jordan block to rational canonical block for Vf = k[t]/⟨(t− 1)3⟩.


