
2 CHAPTER 1. NUMBERS

1.1 The Natural Numbers

The elements of the set of natural numbers:

N = {1, 2, 3, 4, 5, ...}

are the numbers we use for counting. They come equipped with an ordering:

1 < 2 < 3 < 4 < ...

and they also come equipped with the:

Well-ordered axiom: Every set of natural numbers except the empty set has
a smallest element.

Note: This is an axiom, meaning we will accept it without demanding a proof.
(Why do you suppose mathematicians are willing to accept this?)

From the well-ordered axiom we may deduce the:

Principle of induction: If S is a subset of N, such that:

(i) 1 ∈ S and

(ii) whenever n ∈ S, the next number after n is also an element of S

then S is equal to N, the set of all natural numbers.

Note: This is not given as an axiom, so we have to prove it!

Proof: Consider the complementary set Sc whose elements are the natural
numbers that are not elements of S. This is also a set of natural numbers,
to which we will apply the well-ordered axiom. In other words, either Sc has
a smallest element or else it is the empty set. Let’s suppose Sc has a smallest
element. That element can’t be 1 (because 1 ∈ S by (i)) and it can’t be anything
bigger than 1 (because whenever Sc contains a number bigger than 1, then Sc

also contains the number immediately before it by (ii)). So no natural number
can be the smallest element of Sc, so Sc is empty, which is the same as saying
that S is the set of all natural numbers.

We can do a lot with the principle of induction. Any time you might be
tempted to write the abbreviation “etc.” or “...” in a proof or definition, then
you probably should use the principle of induction. For example, we define the
addition of 1 to any natural number m as follows:

Definition of Addition of 1: m+ 1 is the next number after m.

But we’d also like to be able to define addition of anything as follows:

m+ 2 is the next number after m+ 1,

m+ 3 is the next number after m+ 2,

etc.
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This is a job for the principle of induction.

Strategy for making definitions by induction.

A function f whose domain is N may be defined in two steps:

(i) Define f(1).

(ii) Define each f(n+ 1), possibly using a previous definition of f(n).

The domain of the function f is then a subset of N that contains 1 by (i), and
whenever n is in the domain, then n+1 is also in the domain by (ii). Therefore
the domain of f is N, by the principle of induction!

Definition of Addition: m+ n is defined for all m and n as follows:

(i) m+ 1 is, as above, defined to be the next number after m.

(ii) Each m+ (n+ 1) is defined to be the next number after m+ n.

Think of m as a fixed natural number and n as a variable. Then (i) and (ii)
define the function f(n) = m + n for all values of n by the strategy above for
definitions by induction.

Clarification: Since we are regarding m as fixed while n is a variable, the two
letters play quite different roles. Because of this, we need to prove annoying
things like the commutativity of addition(!) If we had thought of them both
as variables, we would not have been able to use the principle of induction to
define addition because f(m,n) = m + n would have been a function of two
variables!

Next we turn to proofs by induction. A mathematical sentence P is an
(ordinary) sentence that is definitely either true or false. For example:

• “There are 5 days in a week” is a false mathematical sentence,

• “14 > 13” is a true mathematical sentence, and

• “5 + 2 = 8” is another false mathematical sentence, but

• “It was a dark and stormy night” is too vague to be mathematical.

P (n) will stand for an ordinary sentence that may contain the variable n
(but no other variables) and which becomes a mathematical sentence whenever
n is given a (natural number) value. These are much like functions f(n), which
contain the variable n and become a number whenever n is given a natural
number value. Sentences P (n) may be true for all values of n, or they may be
only true for some (or no) values. For example:

• “There are n days in a week” is only true for the value n = 7. But

• “n+ 1 > n” is true for all values of n, and

• “n+ 1 = n” is never true (but it is still of the form P (n)), while

• “n = m” is only of the form P (n) when a value for m is chosen.
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Suppose we are given P (n), which we think should be true for all n.

Strategy for proving P (n) is true for all n by induction.

This may be done in two steps:

(i) Prove that the sentence P (1) is true.

(ii) Prove that each sentence P (n + 1) is true, possibly making use of the
assumed truth of P (n).

Define S to the set of natural numbers that make P (n) true. 1 ∈ S by (i),
and whenever n ∈ S, then n + 1 ∈ S, by (ii). Thus S = N by the principle of
induction, so proving (i) and (ii) proves that the sentences P (n) are all true.

Associativity Law of Addition:

(l +m) + n = l + (m+ n)

for all natural numbers l,m, n.

Proof: Think of l and m as fixed. We follow the strategy for a proof by
induction to prove, for all n, the associativity sentences:

“(l +m) + n = l + (m+ n)”

which we’ll call P (n).

(i) By addition definition (i), (l + m) + 1 is the next number after l + m,
and by addition definition (ii), l + (m+ 1) is also the next number after l +m.
Since there is only one next number after l +m, we get:

(l +m) + 1 = l + (m+ 1)

That is, P (1) is proved to be true.

More Clarification: In the proof of (i) above, l + m plays the role of m in
addition definition (i), and l and m play the roles of m and n, respectively,
in addition definition (ii). This scrambling of letters is unfortunate in these
proofs, but it is also pretty much unavoidable. When you are checking these
proofs and constructing your own, you might want to keep careful track of such
scrambles. One way of keeping track would be with footnotes. As an example,
I’ve footnoted the scrambles for you in the remainder of this proof.

(ii) We need to prove each P (n+ 1):

(l +m) + (n+ 1) = l + (m+ (n+ 1))

allowing ourself to assume P (n):

(l +m) + n = l + (m+ n)
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We will do this by taking the next numbers after each side of equation P (n)
(which must then be equal to each other!). Applying addition definition (ii)1 to
the left side, we see that:

(l +m) + (n+ 1) is the next number after (l +m) + n

On the other hand, applying addition definition (ii)2 to the right side of the
equation, we see that l + ((m + n) + 1) is the next number after l + (m + n).
Moreover, using P (1) above3, which we have already proved(!) and substitution,
we get l + ((m+ n) + 1) = l + (m+ (n+ 1)), so:

l + (m+ (n+ 1)) is the next number after l + (m+ n)

and putting these together, we do indeed get (l+m)+(n+1) = l+(m+(n+1))
completing part (ii) of the proof.

Thus our proof by induction strategy proves that the associativity sentence
is true for every n. And since l and m could be anything, we have proved the
associative law of addition!

You will prove the commutative law of addition (in the exercises).

Definition of Multiplication: m× n is defined for all m and n as follows:

(i) m× 1 = m.

(ii) Each m× (n+ 1) = m× n+m.

Think ofm as a fixed natural number and n as a variable. Then f(n) = m×n
(also written mn) is defined for all n by induction.

Note: By writing m × n + m or mn + m, we mean, of course, (m × n) + m,
following the standard rules for the order of arithmetic operations.

Multiplication distributes with addition:

(l +m)× n = l × n+m× n

for all natural numbers l,m, n.

Proof: Think of l and m as fixed, and apply the induction strategy to prove:

“(l +m)× n = l × n+m× n”

(the distributivity sentence, which we’ll call P (n)) for all n.

(i) Two applications of multiplication definition (i) give P (1):

(l +m)× 1 = l +m = l × 1 +m× 1

1Here, l + m plays the role of m in the definition.
2Here, l and m + n play the role of m and n, respectively, in the definition.
3Here, m and n play the role of l and m, respectively.
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(ii) For each n, if we assume P (n) is true: (l +m)n = ln+mn, then

(l +m)(n+ 1) = (l +m)n+ (l +m) = (ln+mn) + (l +m)

by multiplication definition (ii) and substituting.

But now we may use the associative and commutative rules for addition to
regroup and reorder the terms of the right side to get:

(ln+mn) + (l +m) = ((ln+mn) + l) +m
= (ln+ (mn+ l)) +m
= (ln+ (l +mn)) +m
= ((ln+ l) +mn) +m
= (ln+ l) + (mn+m)

On the other hand:

l(n+ 1) = ln+ l and m(n+ 1) = mn+m

by multiplication definition (ii). So we see that P (n+ 1) follows:

(l +m)(n+ 1) = l(n+ 1) +m(n+ 1)

and we conclude that the distributivity sentence P (n) is true for all n.

We will leave the associative law of multiplication for the exercises, and prove
instead the commutative law:

Multiplication is commutative: mn = nm for all m and n.

Proof: Think of m as fixed and use proof by induction to prove:

“mn = nm”

(the commutativity sentences, which we’ll call P (n)) for all values of n.

(i) m× 1 = m, so we need to prove 1×m = m. We’ll do this by induction!

(i′) 1× 1 = 1 by multiplication definition (i)

(ii′) For each n, 1× n = n implies that 1× (n+ 1) = 1× n+ 1 = n+ 1
by multiplication definition (ii).

(i′) and (ii′) together prove 1 × n = n for all n (including m, whatever m is),
which is what we needed to prove (i). Now on to the proof of (ii).

(ii) For each n, mn = nm implies that m(n + 1) = mn + m = nm + m
by multiplication definition (ii) and substitution. But nm +m = (n + 1)m by
the distributive law and (i) above, so m(n + 1) = (n + 1)m. By our proof by
induction strategy we’ve proved P (n) for all n, which is the commutative law.

This completes the basic arithmetic of the natural numbers. We’ve seen
how induction was an important tool for making precise definitions and proofs.
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Next, we’ll do a couple of easy proofs by induction as further illustration of this
powerful strategy. For this, we’ll use one more definition:

Definition of subtraction of 1: For all natural numbers n except n = 1,
n− 1 is defined to be the natural number immediately before n .

Proposition 1.1.1. For all n, the nth odd number is 2n− 1.

Proof (by induction):

(i) The first odd number is 1, which is the number immediately before 2×1.

(ii) For each n, if the nth odd number is 2n−1, then the n+1st odd number
is (2n− 1) + 2 (odd numbers alternate with even numbers!), which is clearly(!)
the number before 2n + 2 = 2(n + 1). That is, the n + 1st odd number is
2(n+ 1)− 1. End of proof!

Proposition 1.1.2. For all n, the sum of the first n odd natural numbers is
n2 = n× n.

Proof (by induction):

(i) The sum of the first 1 odd numbers is 1 = 12.

(ii) For each n, if the sum of the first n odd numbers is n2, then the n+ 1st
odd number is 2(n+ 1)− 1 = 2n+ 1 by Proposition 1.1.1 and so the sum of the
first n+ 1 odd numbers is:

n2 + (2n+ 1) = (n2 + n) + (n+ 1) = n(n+ 1) + (n+ 1) = (n+ 1)2

by the standard rules of arithmetic. End of proof.

Remark: One can prove many results of this type using induction. See the
exercises and any elementary textbook in number theory.

Like subtraction, division of natural numbers is not usually defined. We’ll
fix this later with the rational numbers. However, we do have:

Division with remainders (long division): To each pair m < k, there is a
quotient natural number q with the property that either:

(a) k = mq, and we say that m divides k (or m is a factor of k),

or else there is a remainder natural number r < m such that:

(b) k = mq + r.

Proof: First of all, if m = 1 then m divides every number (k = 1 × k) so
we only need to worry about m’s that are greater than 1. Fixing m, we will use
proof by induction to prove division with remainders for all n and k = m + n
(the entire division with remainders sentence with k = m+n will be our P (n)).
The two cases complicate matters somewhat, but it all works out:
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(i) m+ 1 = m× 1 + 1 (this is case (b) with r = 1). This proves P (1).

(ii) For each n, if P (n) is true for k = m+ n, then either:

(a) m+ n = mq, or or else:

(b) m+ n = mq + r and r < m

In (a), m+ (n+ 1) = mq + 1 which is case (b) of P (n+ 1) with remainder 1.

In (b), there are two possibilities to consider:

(a′) if r + 1 = m, then m+ (n+ 1) = mq +m = m(q + 1)
(This is case (a) of P (n+ 1)) or

(b′) if r + 1 < m, then m+ (n+ 1) = mq + (r + 1)
(This is case (b) of P (n+ 1) with remainder r + 1).

Thus no matter which case occurs in division with remainders for k = m+n,
we’ve proved that division with remainders is then true for k = m+ (n+ 1). So
division with remainders is true for every k > m by induction.

Definition: A natural number p (other than 1) is prime if the only numbers
that divide p are 1 and p itself.

The primes under 50: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

Here’s a different use of the well-ordered axiom.

Fundamental Theorem of Arithmetic: Every natural number except 1
factors as a product of prime numbers.

Proof: Let S be the set of natural numbers (other than 1) that cannot be
factored as a product of prime numbers. By the well-ordered axiom S is either
empty, or else it has a smallest element, which we’ll call k, and which is either
prime or not prime. But:

(a) Prime numbers do not belong to S, because they are factored!

(b) Numbers that are not prime (other than 1) can be written as k = mq
with both m and q smaller than k. So if k is the smallest element of S, then
both m and q are not in S and therefore they can both be factored(!). But then
k can be factored, too, so k couldn’t have been in S in the first place!

Thus there cannot be a smallest element of S, so S is empty, which means
that all natural numbers (other than 1) can be factored.

Remarks: The primes are the building blocks of the natural numbers much
like the elements are the building blocks of the molecules. The factorization of
a number into a product of primes is unique, as we shall see later in the course.
If you are given a very large number, however, there is no known algorithm
for factoring it quickly as a product of primes, even on a fast computer. This
observation has been exploited for internet security. It is even difficult to tell
quickly whether the number is prime or not, though there are some quick ways
of telling “almost for sure” whether or not a given large number is prime.
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We can now prove a very famous old result of Euclid:

Theorem (Euclid): There are infinitely many prime numbers.

Proof: Suppose we only know of finitely many. We could name them:

p1, p2, ..., pn

and we could then build the following number:

N = p1 × p2 × ...× pn + 1

By the fundamental theorem of arithmetic, N factors as a product of primes,
but none of the known primes p1, ..., pn divides N . So the prime factors of N
are new, and since there are always new primes, there must be infinitely many!

We finish the natural numbers with another useful result of Euclid:

Euclid’s Algorithm: Start with natural numbers m < n. Perform long divi-
sions according to the following algorithm whenever there is a remainder:

n = mq1 + r1
m = r1q2 + r2
r1 = r2q3 + r3
r2 = r3q4 + r4

Eventually the algorithm terminates with no remainder: rk = rk+1qk+2, and
the last of the remainders, namely rk+1, is the greatest common divisor (gcd)
of m and n, i.e. the largest natural number that divides both. We will prove
this later in the course, but for now, let’s consider an:

Example: Find the gcd of 25 × 33 × 52 = 21600 and 22 × 33 × 55 = 337500.

We can do this with Euclid’s algorithm:

337500 = 21600 × 15 + 13500
21600 = 13500 × 1 + 8100
13500 = 8100 × 1 + 5400
8100 = 5400 × 1 + 2700
5400 = 2700 × 2

and then rk = 5400, rk+1 = 2700 and qk+2 = 2, so 2700 is the gcd.

Of course, those of you who were paying attention in gradeschool also know:
22×33×52 = 2700 is the gcd, and this is certainly an easier way to find the gcd of
these two particular numbers than Euclid’s algorithm. But there’s a catch. This
way of finding gcd’s requires the factorizations of m and n. Euclid’s algorithm
doesn’t require any factorizations, and indeed using Euclid’s algorithm to find
the gcd of two large numbers is very fast and easy (for computers), even when
factoring the numbers is slow and hard.
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1.1.1 Natural Number Exercises

1-1 Find the error in the following fake definition by induction of subtraction:

Fake Subtraction definition: Let m be a natural number other than 1.

(i) f(1) = m− 1 is the number before m.

(ii) f(n+ 1) = m− (n+ 1) is the number before f(n) = m− n.

Therefore, m− n is defined (and a natural number!) for all m and n.

1-2 Here’s another arithmetic operation that can be defined by induction:

(a) Define the exponential mn by induction.

(m is the “base” and n is the “exponent”)

(b) Prove by induction that ml+n = mlmn.

(c) Prove by induction that (ml)n = mln.

1-3 Define the factorial n! by induction.

1-4 Prove by induction that addition of natural numbers is commutative.

1-5 Prove by induction that multiplication of natural numbers is associative.

1-6 (a) Prove by induction that the nth even number is 2n.

(b) Prove by induction that the sum of the first n even numbers is n×(n+1).

1-7 Find (and count) all the prime numbers:

(a) between 1 and 100

(b) between 101 and 200

(c) between 201 and 300

(d) between 301 and 400

1-8 Factor each of the following numbers as a product of primes:

(a) 9699690

(b) 82861

(c) 10001

1-9 Find the gcd of 159477 and 241133 using Euclid’s algorithm.

1-10 Induction also is important in set theory.

(a) Define the set Sn = {1, 2, ..., n} by induction.

(b) Prove by induction that there are exactly 2n subsets of Sn.

Hint: Exactly half the subsets of Sn+1 contain the element n+ 1.




